山东省威海市2024届高二数学第一学期期末经典试题含解析_第1页
山东省威海市2024届高二数学第一学期期末经典试题含解析_第2页
山东省威海市2024届高二数学第一学期期末经典试题含解析_第3页
山东省威海市2024届高二数学第一学期期末经典试题含解析_第4页
山东省威海市2024届高二数学第一学期期末经典试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省威海市2024届高二数学第一学期期末经典试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.观察下列各式:,,,,,可以得出的一般结论是A.B.C.D.2.已知点,则满足点到直线的距离为,点到直线距离为的直线的条数有()A.1 B.2C.3 D.43.若空间中n个不同的点两两距离都相等,则正整数n的取值A.至多等于3 B.至多等于4C.等于5 D.大于54.已知、是平面直角坐标系上的直线,“与的斜率相等”是“与平行”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分条件也非必要条件5.“”是“方程是圆的方程”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.直线的倾斜角为()A. B.C. D.7.变量,之间有如下对应数据:3456713111087已知变量与呈线性相关关系,且回归方程为,则的值是()A.2.3 B.2.5C.17.1 D.17.38.已知数列是等差数列,下面的数列中必为等差数列的个数为()①②③A.0 B.1C.2 D.39.已知在直角坐标系xOy中,点Q(4,0),O为坐标原点,直线l:上存在点P满足.则实数m的取值范围是()A. B.C. D.10.如图,在平行六面体中,,则与向量相等的是()A. B.C. D.11.已知一个圆锥体积为,任取该圆锥的两条母线a,b,若a,b所成角的最大值为,则该圆锥的侧面积为()A. B.C. D.12.“1<x<2”是“x<2”成立的A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.用1,2,3,4,5组成没有重复数字的五位数,其中个位小于百位且百位小于万位的五位数有n个,则的展开式中,的系数是___________.(用数字作答)14.已知、是空间内两个单位向量,且,如果空间向量满足,且,,则对于任意的实数、,的最小值为______15.已知满足约束条件,则的最小值为___________16.已知双曲线:,,是其左右焦点.圆:,点为双曲线右支上的动点,点为圆上的动点,则的最小值是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)求函数f(x)的最小正周期;(2)当时,求函数f(x)的值域.18.(12分)已知抛物线的准线方程为(1)求C的方程;(2)直线与C交于A,B两点,在C上是否存在点Q,使得直线QA,QB分别与y轴交于M,N两点,且?若存在,求出点Q的坐标;若不存在,说明理由19.(12分)已知数列的前项和为,且,(1)求的通项公式;(2)求的最小值20.(12分)已知点及圆,点P是圆B上任意一点,线段的垂直平分线l交半径于点T,当点P在圆上运动时,记点T的轨迹为曲线E(1)求曲线E的方程;(2)设存在斜率不为零且平行的两条直线,,它们与曲线E分别交于点C、D、M、N,且四边形是菱形,求该菱形周长的最大值21.(12分)已知等差数列中,,.(1)求的通项公式;(2)求的前项和的最大值.22.(10分)某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价x(元)88.28.48.68.89销量y(件)908483807568(1)求回归直线方程中的实数;(2)根据回归方程预测当单价为10元时的销量.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,由上述式子可以归纳:左边每一个式子均有2n-1项,且第一项为n,则最后一项为3n-2右边均为2n-1的平方故选C点睛:归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想)2、D【解析】以为圆心,为半径,为圆心,为半径分别画圆,将所求转化为求圆与圆的公切线条数,判断两圆的位置关系,从而得公切线条数.【详解】以为圆心,为半径,为圆心,为半径分别画圆,如图所示,由题意,满足点到直线的距离为,点到直线距离为的直线的条数即为圆与圆的公切线条数,因为,所以两圆外离,所以两圆的公切线有4条,即满足条件的直线有4条.故选:D【点睛】解答本题的关键是将满足点到直线的距离为,点到直线距离为的直线的条数转化为圆与圆的公切线条数,从而根据圆与圆的位置关系判断出公切线条数.3、B【解析】先考虑平面上的情况:只有三个点的情况成立;再考虑空间里,只有四个点的情况成立,注意运用外接球和三角形三边的关系,即可判断解:考虑平面上,3个点两两距离相等,构成等边三角形,成立;4个点两两距离相等,由三角形的两边之和大于第三边,则不成立;n大于4,也不成立;空间中,4个点两两距离相等,构成一个正四面体,成立;若n>4,由于任三点不共线,当n=5时,考虑四个点构成的正四面体,第五个点,与它们距离相等,必为正四面体的外接球的球心,由三角形的两边之和大于三边,故不成立;同理n>5,不成立故选B点评:本题考查空间几何体的特征,主要考查空间两点的距离相等的情况,注意结合外接球和三角形的两边与第三边的关系,属于中档题和易错题4、D【解析】根据直线平行与直线斜率的关系,即可求解.【详解】解:与的斜率相等”,“与可能重合,故前者不可以推出后者,若与平行,与的斜率可能都不存在,故后者不可以推出前者,故前者是后者的既非充分条件也非必要条件,故选:D.5、A【解析】利用充分条件和必要条件的定义判断.【详解】若方程表示圆,则,即,解得或,故“”是“方程是圆的方程”的充分不必要条件,故选:A6、D【解析】若直线倾斜角为,由题设有,结合即可得倾斜角的大小.【详解】由直线方程,若其倾斜角为,则,而,∴.故选:D7、D【解析】将样本中心点代入回归方程后求解【详解】,,将样本中心点代入回归方程,得故选:D8、C【解析】根据等差数列的定义判断【详解】设的公差为,则,是等差数列,,是常数列,也是等差数列,若,则不是等差数列,故选:C9、A【解析】根据给定直线设出点P的坐标,再借助列出关于的不等式,然后由不等式有解即可计算作答.【详解】因点P在直线l:上,则设,于是有,而,因此,,即,依题意,上述关于的一元二次不等式有实数解,从而有,解得,所以实数m的取值范围是.故选:A10、A【解析】根据空间向量的线性运算法则——三角形法,准确运算,即可求解.【详解】由题意,在平行六面体中,,可得.故选:A.11、B【解析】设圆锥的母线长为R,底面半径长为r,由题可知圆锥的轴截面是等边三角形,根据体积公式计算可得,利用扇形的面积公式计算即可求得结果.【详解】如图,设圆锥的母线长为R,底面半径长为r,由题可知圆锥的轴截面是等边三角形,所以,圆锥的体积,解得,所以该圆锥的侧面积为.故选:B12、A【解析】因为“若,则”是真命题,“若,则”是假命题,所以“”是“”成立的充分不必要条件.选A考点:充分必要条件的判断【易错点睛】本题主要考查了充分条件,必要条件,充要条件的判断,属于基础题.对于命题“若,则”是真命题,我们说,并且说是的充分条件,是的必要条件,命题“若,则”是假命题,我们说,由充分条件,必要条件的定义,可以判断出“”是“”成立的充分不必要条件.掌握充分条件,必要条件的定义是解题关键二、填空题:本题共4小题,每小题5分,共20分。13、2022【解析】根据排列和组合计数公式求出,然后利用二项式定理进行求解即可【详解】解:用1,2,3,4,5组成没有重复数字的五位数中,满足个位小于百位且百位小于万位的五位数有个,即,当时,,则系数是,故答案为:202214、【解析】根据已知可设,,,根据已知条件求出、、的值,将向量用坐标加以表示,利用空间向量的模长公式可求得的最小值.【详解】因为、是空间内两个单位向量,且,所以,,因为,则,不妨设,,设,则,,解得,则,因为,可得,则,所以,,当且仅当时,即当时,等号成立,因此,对于任意的实数、,的最小值为.故答案为:.15、【解析】根据题意,作出可行域,进而根据几何意义求解即可.【详解】解:作出可行域如图,将变形为,所以根据几何意义,当直线过点时,有最小值,所以联立方程得,所以的最小值为故答案为:16、##【解析】利用双曲线定义,将的最小值问题转化为的最小值问题,然后结合图形可解.【详解】由题设知,,,,圆的半径由点为双曲线右支上的动点知∴∴.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)先通过降幂公式和辅助角公式将函数化简,进而求出周期;(2)求出的范围,进而结合三角函数的性质求得答案.【小问1详解】,函数最小正周期为.【小问2详解】当时,,,∴,即函数的值域为.18、(1)(2)见解析【解析】(1)根据准线方程得出抛物线方程;(2)联立直线和抛物线方程,由韦达定理结合求解即可.【小问1详解】【小问2详解】设,联立,得由,得,假设C上存在点Q,使得直,则又即存在点满足条件.19、(1)(2)【解析】(1)由可求得的值,由可求得数列的通项公式;(2)求得,利用二次函数的基本性质可求得的最小值.【小问1详解】解:由题意可得,解得,所以,.当时,,当时,,也满足,故对任意的,.【小问2详解】解:,所以,当或时,取得最小值,且最小值为.20、(1)(2)【解析】(1)根据椭圆的定义和性质,建立方程求出,即可(2)设的方程为,,,,,设的方程为,,,,,分别联立直线方程和椭圆方程,运用韦达定理和判别式大于0,以及弦长公式,求得,,运用菱形和椭圆的对称性可得,关于原点对称,结合菱形的对角线垂直和向量数量积为0,可得,设菱形的周长为,运用基本不等式,计算可得所求最大值【小问1详解】点在线段的垂直平分线上,,又,曲线是以坐标原点为中心,和为焦点,长轴长为的椭圆设曲线的方程为,,,曲线的方程为【小问2详解】设的方程为,,,,,设的方程为,,,,,联立可得,由可得,化简可得,①,,,同理可得,因为四边形为菱形,所以,所以,又因为,所以,所以,关于原点对称,又椭圆关于原点对称,所以,关于原点对称,,也关于原点对称,所以且,所以,,,,因为四边形为菱形,可得,即,即,即,可得,化简可得,设菱形的周长为,则,当且仅当,即时等号成立,此时,满足①,所以菱形的周长的最大值为【点睛】关键点点睛:在处理此类直线与椭圆相交问题中,一般先设出直线方程,联立方程,利用韦达定理得出,,再具体问题具体分析,一般涉及弦长计算问题,运算比较繁琐,需要较强的运算能力,属于难题。21、(1);(2)30.【解析】(1)设出等差数列的公差,由已知列式求得公差,进一步求出首项,代入等差数列的通项公式求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论