版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数怎么又不够用了
有理数整数分数正整数
零负整数正分数负分数有理数正有理数零负有理数正整数正分数负整数负分数你知道吗?.
.
a.小红是刚升入八年级的新生,一个周末的上午,当工程师的爸爸给小红出了两个数学题(1)两个数3.252525……与3.252252225……一样吗?它们有什么不同?(2)一个边长为6cm的正方形木板,按如图的痕迹锯掉四个一样的直角三角形.请计算剩下的正方形木板的面积是多少?剩下的正方形木板的边长又是多少厘米呢?你能帮小红解决这个问题吗?b.你能求出面积为2的正方形的边长吗?你知道圆周率的精确值吗?……它们能用整数或分数(即有理数)来表示吗?
能帮忙吗?2把两个边长为1的小正方形通过剪、拼,设法得到一个大正方形剪一剪拼一拼1111.议一议可能是整数吗?可能是分数吗?小组讨论:数怎么又不够用了!a2=2,1<a2<4,得到1<a<2,a一定不是整数;因为a2=2,所以a一定不是分数。在等式a
2=2中,a既不是整数,也不是分数,那么一定不是有理数。画一画
用16个边长为1的小正方形拼成了如图的网格,任意连接两个格点,就得到一条线段,
试分别画出一条长度是有理数的线段和一条长度不是有理数的线段.ABGCDEF
公元前500年,古希腊的毕达哥拉斯(Pythagoras)学派认为“宇宙间的一切现象都能归结为整数或整数之比,即都可用有理数来描述。
这学派的成员希伯索斯(Hippasus)发现边长为1的正方形的对角线的长不能有理数来表示,这就动摇了毕达哥拉斯学派的信条,引起了信徒们的恐慌,他在逃回家的路上,遭到毕氏成员的追捕,被投入大海。献身科学,执着追求欣赏有趣的图形:11毕达哥拉斯树螺形图二、活动与探究活动1:面积为2,5的正方形的边长a,b究竟是多少呢?边长a面积s1<a<21<S<41.4<a<1.51.96<s<2.251.41<a<1.421.9881<s<2.01641.414<a<1.4151.999396<s<2.0022251.4142<a<1.41431.99996164<s<2.00024449
是多少?探索:=1.41421356…
是多少?探索:=2.2360679…结论:a,b既不是整数,也不是分数,则a,b
一定不是有理数.活动2:分数化成小数,最终此小数的形式有几种情况?请同学们以学习小组活动:一同学举出任意一分数,另一同学将此分数化成小数.并总结此小数的形式?结论:分数只能化成有限小数或无限循环小数.即任何有限小数或无限循环小数都是有理数.像0.585885888588885…,1.41421356…,2.2360679…等这些数的小数位数都是无限的,但是又不是循环的,是无限不循环小数.强调故无限不循环小数叫无理数.(圆周率π=3.14159265…也是一个无限不循环小数,故π是无理数)三、分一分到目前为止我们所学过的数可以分为几类?按小数的形式来分有理数:有限小数或无限循环小数无理数:无限不循环小数数整数分数四、辨一辨例1填空3.14159,-5.232332…,12334567891011…(由相继的正整数组成).?有理数集合无理数集合3.14159,-5.232332…12334567891011………(1)有限小数是有理数;()(2)无限小数都是无理数;()(3)无理数都是无限小数;()(4)有理数是有限小数.(
)例2判断题╳√?√╳1.无理数是无限不循环小数,有理数是有限小数或无限循环小数.2.任何一个有理数都可以化成分数形式(p,q为整数且互质),而无理数不能.强调以下各正方形的边长是无理数的是()A.面积为25的正方形;B.面积为的正方形;C.面积为8的正方形;D.面积为1.44的正方形.C例3例4一个直角三角形两条直角边的长分别是3和5,则斜边a是有理数吗?解:由勾股定理得:a2=32+52,即a2=34.因为34不是完全平方数,所以a不是有理数.?35a五、练一练1.随堂练习.2.习题2.2.3.家庭作业:学习丛书.本课小结:1.无理数的定义.2.数的分类.3.判定一个数是无理数还是有理数.探究与活动:设计面积为5π的圆的半径为a.(1)a是有理数吗?说说你的理由.(2)估计a的值(精确到十分位,并利用你的计算器验证
你的估计.(3)如果精确到百分位呢?解:∵πa2=5π,∴a2=5.(1)a不是有理数,因为a既不是整数,也不是分数,而是无限不循环小数.(2)估计a≈2.2.(3)估计a≈2.24.24=25吗?小明自豪地对同学说:“我可以证明24=25.”同学们都觉得是天方夜谭.课后探究:读一读,你有何收获?小明取一张方格纸如下图(1),如图将它剪开,然后拼成图(2)的正方形.同学们数了一下,图(1)有24个方格,图(2)变成了25个方格.这把同学们都搞闷了,你能揭穿他的骗术吗?事实上,3,4两块并不密切合缝,拼成的正方形缺少了图中的阴影部分。你想出来了吗?是谁最早使用符号π表示圆周率?无理数π表示圆周率.是从什么时候开始用π表示圆周率的呢?为什么用字母呢π?
开卷有益:1600年英国的威廉.奥托兰特(WillianOughtred)首先使用表示圆周率,他的理由是,因为π是希腊文圆周的第一个字母,奥托兰特用它表示圆周长,而δ是希腊文直径的第一个字母,奥托兰特用它表示直径,根据圆周率=,理解为圆周率,但在推求圆周率
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 西交利物浦大学《药事管理学》2023-2024学年第一学期期末试卷
- 二零二五年独立电影导演合作聘用协议2篇
- 二零二五版办公室耗材专业配送与售后服务合同2篇
- 武昌职业学院《空间解析几何》2023-2024学年第一学期期末试卷
- 2024版投资顾问居间服务协议示范文本版B版
- 2025年度砂石料电商平台支付结算合作协议3篇
- 中建四局2024年度标准建筑工程协议模板版
- 2025年度智能照明系统安装与维护劳务外包合同范本2篇
- 二零二五年度货物运输合同货物损坏赔偿及维修服务合同3篇
- 2024版家庭装修简易合同范本
- 设计材料与工艺课程 课件 第1章 产品设计材料与工艺概述
- 幼儿园反恐防暴技能培训内容
- 食品企业质检员聘用合同
- 中医诊所内外部审计制度
- 自然辩证法学习通超星期末考试答案章节答案2024年
- 2024年国家危险化学品经营单位安全生产考试题库(含答案)
- 护理员技能培训课件
- 河南省郑州市2023-2024学年高二上学期期末考试 数学 含答案
- 2024年资格考试-WSET二级认证考试近5年真题集锦(频考类试题)带答案
- 试卷中国电子学会青少年软件编程等级考试标准python三级练习
- 公益慈善机构数字化转型行业三年发展洞察报告
评论
0/150
提交评论