




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年陕西省宝鸡高三上册9月第二次月考理科数学试题一.选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.1.设集合A={x|x2-5x+6>0},B={x|x-1<0},则A∩B=A.(-∞,1) B.(-2,1)C.(-3,-1) D.(3,+∞)2.复数,则其共轭复数在复平面内对应的点位于A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知向量满足,,则A.4 B.3 C.2 D.04.设,则a,b,c的大小关系为(
)A. B. C. D.5.函数的图像为(
)A. B.C. D.6.已知是定义在上的函数,那么“函数在上单调递增”是“函数在上的最大值为”的(
)A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件7.根据《民用建筑工程室内环境污染控制标准》,文化娱乐场所室内甲醛浓度≤0.1mg/m3为安全范围.已知某新建文化娱乐场所竣工时室内甲醛浓度为6.05mg/m3,使用了甲醛喷剂并处于良好的通风环境下时,室内甲醛浓度y(t)(单位:mg/m3)与竣工后保持良好通风的时间t(t∈N)(单位:周)近似满足函数关系式,则该文化娱乐场所竣工后的甲醛浓度要达到安全开放标准,至少需要放置的时间为(ln2≈0.7,ln3≈1.1,ln5≈1.6)(
)A.5周 B.6周 C.7周 D.8周8.设函数在区间上单调递减,则的取值范围是(
)A. B.C. D.9.已知,关于该函数有下列四个说法:①的最小正周期为;②在上单调递增;③当时,的取值范围为;④的图象可由的图象向左平移个单位长度得到.以上四个说法中,正确的个数为(
)A. B. C. D.10.已知等比数列的前3项和为168,,则(
)A.14 B.12 C.6 D.311.设函数的定义域为R,为奇函数,为偶函数,当时,.若,则(
)A. B. C. D.12.设分别是定义在上的奇函数和偶函数,当时,.且,则不等式的解集是(
)A. B.C. D.二.填空题:本题共4小题,每小题5分,共20分.13.已知函数是偶函数,则.14.曲线在点处的切线方程为.15.4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有种.16.在中,,的角平分线交BC于D,则.三.解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.设等差数列的前项和为,且.(1)求;(2)设,,求.18.在中,,.(1)求;(2)再在条件①、条件②、条件③这三个条件中选择一个作为已知,使存在且唯一确定,并求边上的中线的长.条件①;条件②的周长为;条件③的面积为.注:如果选择的条件不符合要求,第(Ⅱ)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.19.某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备9.810.310.010.29.99.810.010.110.29.7新设备10.110.410.110.010.110.310.610.510.410.5旧设备和新设备生产产品的该项指标的样本平均数分别记为和,样本方差分别记为和.(1)求,,,;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).20.在四棱锥中,底面是正方形,若.(1)证明:平面平面;(2)求二面角的平面角的余弦值.21.已知椭圆:的右焦点为,点在上,为椭圆的半焦距.(1)求椭圆的标准方程;(2)若经过的直线与交于,(异于)两点,与直线交于点,设,,的斜率分别为,,,求证:.22.已知函数,(),(1)若曲线与曲线在它们的交点(1,c)处具有公共切线,求a,b的值(2)当时,若函数在区间[k,2]上的最大值为28,求k的取值范围1.A【分析】先求出集合A,再求出交集.【详解】由题意得,,则.故选A.本题考点为集合的运算,为基础题目.2.C【详解】∵,其共轭复数为,对应点为在第三象限,故选C.3.B【详解】分析:根据向量模的性质以及向量乘法得结果.详解:因为所以选B.点睛:向量加减乘:4.D【分析】根据指数函数和对数函数的性质求出的范围即可求解.【详解】,,,,,,.故选:D.5.D【分析】分析函数的定义域、奇偶性、单调性及其在上的函数值符号,结合排除法可得出合适的选项.【详解】函数的定义域为,且,函数为奇函数,A选项错误;又当时,,C选项错误;当时,函数单调递增,故B选项错误;故选:D.6.A【分析】利用两者之间的推出关系可判断两者之间的条件关系.【详解】若函数在上单调递增,则在上的最大值为,若在上的最大值为,比如,但在为减函数,在为增函数,故在上的最大值为推不出在上单调递增,故“函数在上单调递增”是“在上的最大值为”的充分不必要条件,故选:A.7.A【分析】先代入t=0计算出值写出函数关系,再根据规范写出函数表达式解出时间t.【详解】依题意可知当t=0时,y=6.05,即0.05+=6.05,=6,所以,由,得,解得t≥ln120=3ln2+ln3+ln5≈4.8,至少需要放置的时间为5周.故选:A8.D【分析】利用指数型复合函数单调性,判断列式计算作答.【详解】函数在R上单调递增,而函数在区间上单调递减,则有函数在区间上单调递减,因此,解得,所以的取值范围是.故选:D9.A【分析】根据三角函数的图象与性质,以及变换法则即可判断各说法的真假.【详解】因为,所以的最小正周期为,①不正确;令,而在上递增,所以在上单调递增,②正确;因为,,所以,③不正确;由于,所以的图象可由的图象向右平移个单位长度得到,④不正确.故选:A.10.D【分析】设等比数列的公比为,易得,根据题意求出首项与公比,再根据等比数列的通项即可得解.【详解】解:设等比数列的公比为,若,则,与题意矛盾,所以,则,解得,所以.故选:D.11.D【分析】通过是奇函数和是偶函数条件,可以确定出函数解析式,进而利用定义或周期性结论,即可得到答案.【详解】[方法一]:因为是奇函数,所以①;因为是偶函数,所以②.令,由①得:,由②得:,因为,所以,令,由①得:,所以.思路一:从定义入手.所以.[方法二]:因为是奇函数,所以①;因为是偶函数,所以②.令,由①得:,由②得:,因为,所以,令,由①得:,所以.思路二:从周期性入手由两个对称性可知,函数的周期.所以.故选:D.在解决函数性质类问题的时候,我们通常可以借助一些二级结论,求出其周期性进而达到简便计算的效果.12.D【分析】构造函数,利用已知可判断出其奇偶性和单调性,进而即可得出不等式的解集.【详解】令,则,因此函数在上是奇函数.①当时,,在时单调递增,故函数在上单调递增.,,.②当时,函数在上是奇函数,可知:在上单调递增,且(3),,的解集为.③当时,,不符合要求不等式的解集是,,.故选:D13.1【分析】利用偶函数的定义可求参数的值.【详解】因为,故,因为为偶函数,故,时,整理得到,故,故114.【分析】先验证点在曲线上,再求导,代入切线方程公式即可.【详解】由题,当时,,故点在曲线上.求导得:,所以.故切线方程为.故.15.【分析】根据题意,有且只有2名同学在同一个小区,利用先选后排的思想,结合排列组合和乘法计数原理得解.【详解】4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学先取2名同学看作一组,选法有:现在可看成是3组同学分配到3个小区,分法有:根据分步乘法原理,可得不同的安排方法种故答案为.本题主要考查了计数原理的综合应用,解题关键是掌握分步乘法原理和捆绑法的使用,考查了分析能力和计算能力,属于中档题.16.【分析】方法一:利用余弦定理求出,再根据等面积法求出;方法二:利用余弦定理求出,再根据正弦定理求出,即可根据三角形的特征求出.【详解】如图所示:记,方法一:由余弦定理可得,,因为,解得:,由可得,,解得:.故.方法二:由余弦定理可得,,因为,解得:,由正弦定理可得,,解得:,,因为,所以,,又,所以,即.故.本题压轴相对比较简单,既可以利用三角形的面积公式解决角平分线问题,也可以用角平分定义结合正弦定理、余弦定理求解,知识技能考查常规.17.(1)(2)【分析】(1)利用等差数列求和公式以及通项公式得到关于的方程组,解之即可得解;(2)结合项可化为相邻两项的差,从而利用裂项相消法求和即可.【详解】(1)因为,所以,即,又因为,所以,联立,解得,所以,(2)结合(1)可知,,.18.(1)(2)答案见解析【分析】(1)由正弦定理化边为角即可求解(2)若选择①:由正弦定理求解可得不存在;若选择②:由正弦定理结合周长可求得外接圆半径,即可求得各边,再由余弦定理可求;若选择③:由面积公式可求各边长,再由余弦定理可求【详解】(1),由正弦定理可得,即,,当时,,即,不符合题意,舍去,,,即.(2)选①,由正弦定理可得,与已知条件矛盾,故不存在,选②周长为,,,,由正弦定理可得,即,,,,即,,,所以存在且唯一确定,设的中点为,,在中,运用余弦定理,,即,,边上的中线的长度.选③面积为,,,,解得,余弦定理可得,.19.(1);(2)新设备生产产品的该项指标的均值较旧设备有显著提高.【分析】(1)根据平均数和方差的计算方法,计算出平均数和方差.(2)根据题目所给判断依据,结合(1)的结论进行判断.【详解】(1),,,.(2)依题意,,,,所以新设备生产产品的该项指标的均值较旧设备有显著提高.20.(1)证明见解析;(2).【分析】(1)取的中点为,连接,可证平面,从而得到面面.(2)在平面内,过作,交于,则,建如图所示的空间坐标系,求出平面、平面的法向量后可求二面角的余弦值.【详解】(1)取的中点为,连接.因为,,则,而,故.在正方形中,因为,故,故,因为,故,故为直角三角形且,因为,故平面,因为平面,故平面平面.(2)在平面内,过作,交于,则,结合(1)中的平面,故可建如图所示的空间坐标系.则,故.设平面的法向量,则即,取,则,故.而平面的法向量为,故.二面角的平面角为锐角,故其余弦值为.21.(1);(2)证明见解析.【分析】(1)根据椭圆焦点坐标,结合代入法进行求解即可;(2)设出直线方程与椭圆方程联立,根据斜率公式,结合一元二次方程根与系数关系进行求解证明即可.【详解】(1)解:因为椭圆:的右焦点为,所以.①因为点在上,所以,②又,③由①②③,解得,.故椭圆的标准方程为.(2)证明:,设,,直线,则.由消去得,所以,,所以,又因为,所以,命题得证.关键点睛:根据斜率公式,结合一元二次方程根与系数关系进行正确的数学运算是解题的关键.22.【详解】试题分析:(1)求a,b的值,根据曲线与曲线在它们的交点处具
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版大数据中心运营场协议书下载
- 二零二五年度火锅连锁品牌加盟合作协议
- 2025版车辆抵押担保公司评估报告合同范本
- 2025年智能交通信号系统安装工程合同
- 2025版电子元器件经销代理合同模板
- 2025版旅游度假区车辆收费员聘用合同含保险
- 二零二五年度成都高新技术企业研发人员劳动合同模板
- 二零二五版融资居间服务专项合作协议样本
- 二零二五年度补充个人房贷补充借款合同范本
- 2025年影视行业独家合作保密与竞业禁止服务合同
- T/CADBM 63-2022建筑室内窗饰产品百叶帘
- 2025年贵州省公务员录用考试《行测》真题及答案解析
- 香囊课件小学生
- 脚手架新型材料性能与应用
- 2024婚姻家事法律服务业白皮书
- 二氧化硅材料制备与性能表征技术研究
- 物理光学知到智慧树期末考试答案题库2025年山东理工大学
- 学校内部控制培训
- 总监理工程师作业指导书
- 2025年全国高压电工证(复审)理论考试试题(1000题)附答案
- 2024年贵州省息烽县事业单位公开招聘医疗卫生岗笔试题带答案
评论
0/150
提交评论