集合与函数概念复习_第1页
集合与函数概念复习_第2页
集合与函数概念复习_第3页
集合与函数概念复习_第4页
集合与函数概念复习_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

《集合与函数概念》复习知识要点1、集合的含义;2、集合间的基本关系;3、集合的运算;4、函数的概念;5、函数的基本性质;6、映射的概念。集合的含义集合间的基本关系集合基本关系集合列举法描述法Venn图包含相等交集并集补集全集知识梳理1、集合中元素的性质(1)确定性:即集合中的元素必须是

的,任何一个对象都能明确判断它“是”或者“不是”某个集合的元素,二者必居其一。(2)互异性:集合中任意两个元素都是

的,换言之,同一个集合里不能重复出现。(3)无序性:集合与它的元素顺序无关的。知识梳理2、集合的表示方法(1)列举法:把集合中的元素

出来,写在

内表示集合的方法。列举法表示集合的特点是清晰、直观。常适用于集合中元素较少时。(2)描述法:把集合中的元素的

描述出来,写在

内表示集合的方法。一般形式是{x|p},其中竖线前面的x叫做此集合的元素,p指出元素x所具有的公共属性。描述法便于从整体把握一个集合,常适用于集合中元素的公共属性较为明显时。知识梳理(3)韦恩图:为了形象的表示集合,有时常用一些封闭的

表示一个集合,这样的图形称为韦恩图,在解题时,利用韦恩图“数”和“形”结合,使得解答十分直观。3、元素与集合的关系如果一个元素a是集合A的元素,称元素a

集合A,记为

,否则称元素a

集合A,记为

。知识梳理4、子集、交集、并集、补集(1)子集的定义:对于集合A和B,如果集合A的任意一个元素都是集合B的元素,我们就说集合A

集合B,或集合B

集合A,也可以说集合A是集合B的子集。记作

,如果集合A不包含于集合B,或集合B不包含集合A,就记作

。规定:空集是任何集合的子集。如果A是B的子集,且A≠B,称集合A是集合B的

,记作

。知识梳理(2)交集的定义:一般地,由属于集合A

属于集合B的元素所组成的集合,叫做A、B的交集。记作

。即A∩B={x|x∈A且∈B}。(3)并集的定义:一般地,由属于集合A

属于集合B的元素所组成的集合,叫做A、B的并集。记作

。即A∪B={x|x∈A或∈B}。(4)补集的定义:一般地,设U是一个集合,A是U的一个子集,由U中所有

A的元素组成的集合,叫做U中子集A的补集,记作

。即CUA={X|X∈U,但X∈A}1.选择适当的符号填空练习:0

φ0

{0}Φ

{0}A∩φ

φA∪φ

AA∩B

A∪B∈∈==2.已知那么=()c3.已知全集I={1,2,3,4,5,6,7,8}A∩CIB={1,2}CIA∩B={7,8}CIA∩CIB={4,5}

求集合A,B解:A={1,2,3,6}B={3,6,7,8}

1326

376845BA例1.m=-6,n=-9,∴B={3,-3}.解:(1)A为空集,即方程无实数解,当a≠0时,欲使方程无解,则要使当a=0时,方程有解;(2)A是单元素集,即方程有一个解,当a=0时,方程有一解;这时A中只有一个元素,为∴a=0或时,A为单元素集,分别为或.当a≠0时,即△=9-8a=0时,(3)A中至多只有一个元素,包括A为空集或A中只有一个元素2种情形根据(1)、(2)结果,得a=0或时,A中至多只有一个元素.D4.已知集合

集合

M∩P={0},若M∪P=S.

则集合S的真子集个数是()(A)8(B)7

(C)16(D)155.已知全集为R,

A={y|y=x2+2x+2},

B={x|y=x2+2x-8},求:(1)A∩B;

(2)A∪CRB;

(3)(CRA)∩(CRB)【解题指导】本题涉及集合的不同表示方法,准确认识集合A、B是解答本题的关键;对(3)也可计算CR(A∪B)。6、已知集合A={x|x2-x-6<0},

B={x|0<x-m<9}(1)

若A∪B=B,求实数m的取值范围;(2)若A∩B≠φ,求实数m的取值范围.(1)【-6≤m≤-2】(2)【-11≤m≤3】7.设集合M={(x,y)|y=√16-x2,y≠0},

N={(x,y)|y=x+a},若M∩N=

,求实数a的取值范围.【解题指导】(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论