




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.3.2函数的极值与导数2021/5/91目标引领:1、利用上节课导数的单调性作铺垫,借助函数图形的直观性探索归纳出导数的极值定义,利用定义求函数的极值.2、感受导数在研究函数性质中一般性和有效性,通过学习体会极值是函数的局部性质,增强数形结合的思维意识。
2021/5/92aby=f(x)xoyy=f(x)xoyabf'(x)>0f'(x)<0如果在某个区间内恒有,则为常数.复习回顾:1.函数的单调性与导数的关系:一般地,设函数y=f(x)在某个区间(a,b)内有导数,如果在这个区间内f/(x)>0,那么函数y=f(x)为这个区间内的增函数;如果在这个区间内f/(x)<0,那么函数y=f(x)为这个区间内的减函数.2021/5/932.求函数单调性的一般步骤①求函数的定义域;②求函数的导数
f/(x)
;③解不等式
f/(x)>0得f(x)的单调递增区间;
解不等式f/(x)<0得f(x)的单调递减区间.2021/5/943、已知函数f(x)=2x3-6x2+7,求f(x)的单调区间,并画出其图象;复习回顾:观察画出的图象,回答下面问题:问题1:在点x=0附近的图象有什么特点?问题2:函数在x=0处的函数值和附近函数值之间有什么关系?问题3:在点x=0附近的导数符号有何变化规律?问题4:函数在x=0处的导数是多少?2021/5/95x=0x<0x>0单调递增f’(x)>0单调递减f’(x)<0f’(0)=0
x
f’(x)+0-f(x)极大值点f(0)极大值单调递增单调递减分析讨论:函数在x=0附近的变化规律:
你能尝试给出极大值的定义吗?f(x)2021/5/96【函数极大值的定义】
设函数y=f(x)在x=x0及其附近有定义若x0满足1.f/(x)=0.2.在x0的两侧的导数异号,满足“左正右负”,oax0bxy2021/5/97你能尝试给出函数在x=2处的结论吗?x>2x<2x=2x>2x<2x=2
f’(x)+0-f(x)单调递增f(2)单调递减极小值点极小值
你能尝试给出极大值的定义吗?2021/5/98【函数极小值的定义】
设函数y=f(x)在x=x0及其附近有定义若x0满足1.f/(x)=0.2.在x0的两侧的导数异号,满足“左负右正”,oaX0bxy极大值与极小值统称为极值,x0叫做函数的极值点.2021/5/99思考3、观察图1.3.10,回答以下问题:问题1:找出图中的极值点,并说明哪些点为极大值点,哪些点为极小值点?问题2:极大值一定大于极小值吗?问题3:函数在其定义域内的极大值和极小值具有唯一性吗?问题4:区间的端点能成为极值点吗?问题5:极值是相对于函数的定义域而言的吗?2021/5/910(1)极值是一个局部概念,反映了函数在某一点附近的大小情况;(2)极值点是自变量的值,极值指的是函数值;(3)函数的极大(小)值可能不止一个,而且函数的极大值未必大于极小值;【关于极值概念的几点说明】(4)函数的极值点一定在区间的内部,区间的端点不能成为极值点。2021/5/911例1.(1)下图是函数的图象,试找出函数的极值点,并指出哪些是极大值点,哪些是极小值点?(2)如果把函数图象改为导函数的图象,哪些是极大值点,哪些是极小值点?2021/5/912x
yOf(x)
x3f
(x)=3x2
当f
(x)=0时,x
=0,而x
=0不是该函数的极值点.f
(x0)
=0x0
是可导函数f(x)的极值点x0左右侧导数异号x0
是函数f(x)的极值点f
(x0)
=0注意:f/(x0)=0是函数取得极值的必要不充分条件思考4:导数为0的点一定是极值点吗?能举例说明吗?导数为0是可导函数在此处取极值点的什么条件?2021/5/913例、求函数的极值.
例题讲解解:当x变化时,的变化情况如下表:+0—0+极大值y2(-2,2)-2x极小值令,解得当时,y有极大值,并且当时,y有极小值,并且2021/5/914(1)求导数f/(x);(2)解方程f/(x)=0(3)通过列表检查f/(x)在方程f/(x)=0的根的左右两侧的符号,进而确定函数的极值点与极值.【求函数极值的步骤】2021/5/9152021/5/916例2xX<-1-1(-1,0)(0,1)1X>1+0--0+所以,当x=-1是,函数的极大值是-2,当x=1时,函数的极小值是2导函数的正负是交替出现的吗?不是极大值极小值2021/5/917求函数极值(极大值,极小值)的一般步骤:(1)确定函数的定义域(2)求方程f’(x)=0的根(3)用方程f’(x)=0的根,顺次将函数的定义域分成若干个开区间,并列成表格(4)由f’(x)在方程f’(x)=0的根左右的符号,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 语文教育培训班学习心得体会
- 道路绿化景观工程资源整合计划
- 戏曲演出舞台机械安全措施
- 商业银行合规沟通协调岗位职责
- 旅游行业纪律教育月学习活动心得体会
- 新乡职业技术学院《传感与检测技术》2023-2024学年第一学期期末试卷
- 上海工会管理职业学院《传播效果研究与测量》2023-2024学年第一学期期末试卷
- 三亚城市职业学院《酒店战略管理》2023-2024学年第一学期期末试卷
- 民办合肥财经职业学院《C程序设计》2023-2024学年第一学期期末试卷
- 联合营销协议及合作分成
- 印刷业财务管理制度
- 公积金变更协议书
- 医疗科室共享协议书
- 2025随州市曾都区城南新区办事处社区工作者考试真题
- 聚会饮酒免责协议书
- 合同签署延期协议书
- 2025年公路水运工程重大事故隐患判定标准深度解析
- 等离子体光学器件设计-全面剖析
- 多模太赫兹量子级联激光器总体规模、主要生产商、主要地区、产品和应用细分研究报告
- 玉米烘干技术协议合同
- 智研咨询重磅发布:2025年垃圾焚烧发电行业市场规模及主要企业市占率分析报告
评论
0/150
提交评论