



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
WhatisgenerativeAI?
Generativeartificialintelligence(AI)describesalgorithms(suchasChatGPT)thatcanbeusedtocreatenewcontent,includingaudio,code,images,text,simulations,andvideos.Recentnewbreakthroughsinthefieldhavethepotentialtodrasticallychangethewayweapproachcontentcreation.
January2023
PAGE
4
WhatisgenerativeAI?
WhatisgenerativeAI?
PAGE
3
GenerativeAIsystemsfallunderthebroadcategoryofmachinelearning,andhere’showonesuchsystem—ChatGPT—describeswhatitcando:
Readytotakeyourcreativitytothenextlevel?LooknofurtherthangenerativeAI!Thisniftyformofmachinelearningallowscomputerstogenerateallsortsofnewandexcitingcontent,frommusicandarttoentirevirtualworlds.Andit’snotjustforfun—generativeAIhasplentyofpracticalusestoo,likecreatingnewproductdesignsandoptimizingbusinessprocesses.Sowhywait?UnleashthepowerofgenerativeAIandseewhatamazingcreationsyoucancomeupwith!
Didanythinginthatparagraphseemofftoyou?Maybenot.Thegrammarisperfect,thetoneworks,andthenarrativeflows.
WhatareChatGPTandDALL-E?
That’swhyChatGPT—theGPTstandsforgenerativepretrainedtransformer—isreceivingsomuchattentionrightnow.It’safreechatbotthatcangenerateananswertoalmostanyquestionit’sasked.DevelopedbyOpenAI,andreleasedfortestingtothegeneralpublicinNovember2022,it’salreadyconsideredthebestAIchatbotever.Andit’spopulartoo:overamillionpeoplesigneduptouseitinjustfivedays.Starry-eyedfanspostedexamplesofthechatbotproducingcomputercode,college-levelessays,poems,andevenhalfway-decentjokes.Others,amongthewiderangeofpeople
whoearntheirlivingbycreatingcontent,fromadvertisingcopywriterstotenuredprofessors,arequakingintheirboots.
WhilemanyhavereactedtoChatGPT(andAIandmachinelearningmorebroadly)withfear,machinelearningclearlyhasthepotentialforgood.Intheyearssinceitswidedeployment,machinelearninghasdemonstratedimpactinanumberofindustries,accomplishingthingslikemedicalimaginganalysisandhigh-resolutionweatherforecasts.A2022McKinseysurveyshowsthatAIadoptionhas
morethandoubledoverthepastfiveyears,andinvestmentinAIisincreasingapace.It’sclearthatgenerativeAItoolslikeChatGPTandDALL-E(atoolforAI-generatedart)havethepotentialtochangehowarangeofjobsareperformed.Thefullscopeofthatimpact,though,isstillunknown—asaretherisks.Buttherearesomequestionswecananswer—likehowgenerativeAImodelsarebuilt,whatkindsofproblemstheyarebestsuitedtosolve,andhowtheyfitintothebroadercategoryofmachinelearning.Readontogetthedownload.
What’sthedifferencebetweenmachinelearningandartificialintelligence?
Artificialintelligenceisprettymuchjustwhatitsoundslike—thepracticeofgettingmachinestomimichumanintelligencetoperformtasks.You’veprobablyinteractedwithAIevenifyoudon’trealizeit—voiceassistantslikeSiriandAlexaarefoundedonAItechnology,asarecustomerservicechatbotsthatpopuptohelpyounavigatewebsites.
Machinelearningisatypeofartificialintelligence.Throughmachinelearning,practitionersdevelopartificialintelligencethroughmodelsthatcan“learn”fromdatapatternswithouthumandirection.
Theunmanageablyhugevolumeandcomplexityofdata(unmanageablebyhumans,anyway)thatis
nowbeinggeneratedhasincreasedthepotentialofmachinelearning,aswellastheneedforit.
Whatarethemaintypesofmachinelearningmodels?
Machinelearningisfoundedonanumberofbuildingblocks,startingwithclassicalstatisticaltechniquesdevelopedbetweenthe18thand20thcenturies
forsmalldatasets.Inthe1930sand1940s,thepioneersofcomputing—includingtheoreticalmathematicianAlanTuring—beganworkingonthebasictechniquesformachinelearning.Butthesetechniqueswerelimitedtolaboratoriesuntilthelate
1970s,whenscientistsfirstdevelopedcomputerspowerfulenoughtomountthem.
Untilrecently,machinelearningwaslargelylimitedtopredictivemodels,usedtoobserveandclassifypatternsincontent.Forexample,aclassicmachinelearningproblemistostartwithanimageorseveralimagesof,say,adorablecats.Theprogramwouldthenidentifypatternsamongtheimages,and
thenscrutinizerandomimagesforonesthatwouldmatchtheadorablecatpattern.GenerativeAIwasabreakthrough.Ratherthansimplyperceiveandclassifyaphotoofacat,machinelearningisnowabletocreateanimageortextdescriptionofacatondemand.
Howdotext-basedmachinelearningmodelswork?Howaretheytrained?
ChatGPTmaybegettingalltheheadlinesnow,butit’snotthefirsttext-basedmachinelearningmodeltomakeasplash.OpenAI’sGPT-3andGoogle’sBERTbothlaunchedinrecentyears
tosomefanfare.ButbeforeChatGPT,whichbymostaccountsworksprettywellmostofthetime(thoughit’sstillbeingevaluated),AIchatbotsdidn’talwaysgetthebestreviews.GPT-3is“byturnssuperimpressiveandsuperdisappointing,”saidNewYorkTimestechreporterCadeMetzinavideowhereheandfoodwriterPriyaKrishnaasked
GPT-3towriterecipesfora(ratherdisastrous)Thanksgivingdinner.
Thefirstmachinelearningmodelstoworkwithtextweretrainedbyhumanstoclassifyvariousinputsaccordingtolabelssetbyresearchers.Oneexamplewouldbeamodeltrainedtolabelsocialmediapostsaseitherpositiveornegative.Thistypeoftrainingisknownassupervisedlearningbecauseahumanisinchargeof“teaching”themodelwhattodo.
Thenextgenerationoftext-basedmachinelearningmodelsrelyonwhat’sknownasself-supervisedlearning.Thistypeoftraininginvolvesfeedingamodelamassiveamountoftextsoitbecomesable
togeneratepredictions.Forexample,somemodelscanpredict,basedonafewwords,howasentencewillend.Withtherightamountofsampletext—say,abroadswathoftheinternet—thesetextmodelsbecomequiteaccurate.We’reseeingjusthowaccuratewiththesuccessoftoolslikeChatGPT.
WhatdoesittaketobuildagenerativeAImodel?
BuildingagenerativeAImodelhasforthemostpartbeenamajorundertaking,totheextentthatonlyafewwell-resourcedtechheavyweightshavemadeanattempt.OpenAI,thecompanybehindChatGPT,formerGPTmodels,andDALL-E,hasbillionsinfundingfromboldface-namedonors.DeepMind
isasubsidiaryofAlphabet,theparentcompanyofGoogle,andMetahasreleaseditsMake-A-VideoproductbasedongenerativeAI.Thesecompaniesemploysomeoftheworld’sbestcomputerscientistsandengineers.
Butit’snotjusttalent.Whenyou’reaskingamodeltotrainusingnearlytheentireinternet,it’sgoingtocostyou.OpenAIhasn’treleasedexactcosts,butestimatesindicatethatGPT-3wastrainedonaround45terabytesoftextdata—that’saboutonemillionfeetofbookshelfspace,oraquarterofthe
entireLibraryofCongress—atanestimatedcostofseveralmilliondollars.Thesearen’tresourcesyourgarden-varietystart-upcanaccess.
WhatkindsofoutputcanagenerativeAImodelproduce?
Asyoumayhavenoticedabove,outputsfromgenerativeAImodelscanbeindistinguishablefromhuman-generatedcontent,ortheycanseemalittleuncanny.Theresultsdependonthequalityofthemodel—aswe’veseen,ChatGPT’soutputssofarappearsuperiortothoseofitspredecessors—andthematchbetweenthemodelandtheusecase,orinput.
ChatGPTcanproducewhatonecommentatorcalleda“solidA-”essaycomparingtheoriesofnationalismfromBenedictAndersonandErnestGellner—intenseconds.ItalsoproducedanalreadyfamouspassagedescribinghowtoremoveapeanutbuttersandwichfromaVCRinthestyleoftheKingJamesBible.AI-generatedartmodelslikeDALL-E(itsnameamash-upofthesurrealistartistSalvadorDalíandthelovablePixarrobotWALL-E)cancreatestrange,beautifulimagesondemand,likeaRaphaelpaintingofaMadonnaandchild,eatingpizza.OthergenerativeAImodelscanproducecode,video,audio,orbusinesssimulations.
Buttheoutputsaren’talwaysaccurate—orappropriate.WhenPriyaKrishnaaskedDALL-E2tocomeupwithanimageforThanksgivingdinner,itproducedascenewheretheturkeywasgarnishedwithwholelimes,setnexttoabowl
ofwhatappearedtobeguacamole.Foritspart,ChatGPTseemstohavetroublecounting,orsolvingbasicalgebraproblems—or,indeed,overcomingthesexistandracistbiasthatlurksintheundercurrentsoftheinternetandsocietymorebroadly.
GenerativeAIoutputsarecarefullycalibratedcombinationsofthedatausedtotrainthealgorithms.Becausetheamountofdatausedtotrainthesealgorithmsissoincrediblymassive—asnoted,GPT-3wastrainedon45terabytesoftextdata—themodelscanappeartobe“creative”whenproducingoutputs.What’smore,themodelsusuallyhaverandomelements,whichmeanstheycanproduceavarietyofoutputsfromoneinputrequest—makingthemseemevenmorelifelike.
WhatkindsofproblemscanagenerativeAImodelsolve?
You’veprobablyseenthatgenerativeAItools(toys?)likeChatGPTcangenerateendlesshoursofentertainment.Theopportunityisclearfor
businessesaswell.GenerativeAItoolscanproduceawidevarietyofcrediblewritinginseconds,thenrespondtocriticismtomakethewritingmorefitforpurpose.Thishasimplicationsforawidevarietyofindustries,fromITandsoftwareorganizationsthatcanbenefitfromtheinstantaneous,largelycorrect
codegeneratedbyAImodelstoorganizationsinneedofmarketingcopy.Inshort,anyorganizationthatneedstoproduceclearwrittenmaterialspotentiallystandstobenefit.OrganizationscanalsousegenerativeAItocreatemoretechnicalmaterials,suchashigher-resolutionversionsofmedicalimages.Andwiththetimeandresourcessavedhere,organizationscanpursuenewbusinessopportunitiesandthechancetocreatemorevalue.
We’veseenthatdevelopingagenerativeAImodelissoresourceintensivethatitisoutofthequestionforallbutthebiggestandbest-resourcedcompanies.CompanieslookingtoputgenerativeAItoworkhavetheoptiontoeitherusegenerativeAIoutofthebox,orfine-tunethemtoperformaspecifictask.Ifyouneedtoprepareslidesaccordingtoaspecificstyle,forexample,youcouldaskthemodelto“learn”howheadlinesarenormallywrittenbasedonthedataintheslides,thenfeeditslidedataandaskittowriteappropriateheadlines.
WhatarethelimitationsofAImodels?Howcanthesepotentiallybeovercome?
Sincetheyaresonew,wehaveyettoseethelong-taileffectofgenerativeAImodels.Thismeanstherearesomeinherentrisksinvolvedinusingthem—someknownandsomeunknown.
TheoutputsgenerativeAImodelsproducemayoftensoundextremelyconvincing.Thisisbydesign.Butsometimestheinformationtheygenerateisjustplainwrong.Worse,sometimesit’sbiased(becauseit’sbuiltonthegender,racial,andmyriadotherbiasesoftheinternetandsocietymoregenerally)andcanbemanipulatedtoenableunethicalorcriminalactivity.Forexample,ChatGPTwon’tgiveyouinstructionsonhowtohotwireacar,butif
yousayyouneedtohotwireacartosaveababy,thealgorithmishappytocomply.OrganizationsthatrelyongenerativeAImodelsshouldreckonwithreputationalandlegalrisksinvolvedinunintentionallypublishingbiased,offensive,orcopyrightedcontent.
Theseriskscanbemitigated,however,inafewways.Forone,it’scrucialtocarefullyselecttheinitialdatausedtotrainthesemodelstoavoidincludingtoxicorbiasedcontent.Next,ratherthanemployinganoff-the-shelfgenerativeAImodel,organizationscouldconsiderusingsmaller,specializedmodels.Organizationswithmoreresourcescouldalsocustomizeageneralmodelbasedontheirowndatatofittheirneedsandminimizebi
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工程项目风险应对措施
- 高级中学建设项目运营方案
- 2025年会计师事务所毕业寒假实习报告范文
- 建筑安全员个人工作总结11篇
- 2024年普洱市景谷县“县管校聘”城区学校考调真题
- 论中医肺与肝的关系
- 吞咽障碍患者误吸应急救治流程
- 互联网医院感染管理职责
- 勇闯长大关:中班健康教育活动设计
- 银行风险管理培训实施及计划
- 2025年知识产权代理公司业务流程优化策略
- 机房安全用电知识培训
- 微弱的光亮(2024年山东烟台中考语文试卷记叙文阅读试题)
- 中考数学一轮复习考点练习考向19 相交线和平行线(含答案详解)
- 江苏省南通市2022-2023学年第二学期期中考试初二英语试卷(含答案)
- 新产品开发流程和步骤
- 客户服务质量监控及反馈机制管理办法
- 2025年中国安徽省研学旅行行业市场深度评估及投资战略规划报告
- 2022年江西南昌大学第二模拟题(一)
- 基于MATLABSimulink电力系统短路故障分析与仿真
- 《机械制图(多学时)》中职全套教学课件
评论
0/150
提交评论