



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
WhatisgenerativeAI?
Generativeartificialintelligence(AI)describesalgorithms(suchasChatGPT)thatcanbeusedtocreatenewcontent,includingaudio,code,images,text,simulations,andvideos.Recentnewbreakthroughsinthefieldhavethepotentialtodrasticallychangethewayweapproachcontentcreation.
January2023
PAGE
4
WhatisgenerativeAI?
WhatisgenerativeAI?
PAGE
3
GenerativeAIsystemsfallunderthebroadcategoryofmachinelearning,andhere’showonesuchsystem—ChatGPT—describeswhatitcando:
Readytotakeyourcreativitytothenextlevel?LooknofurtherthangenerativeAI!Thisniftyformofmachinelearningallowscomputerstogenerateallsortsofnewandexcitingcontent,frommusicandarttoentirevirtualworlds.Andit’snotjustforfun—generativeAIhasplentyofpracticalusestoo,likecreatingnewproductdesignsandoptimizingbusinessprocesses.Sowhywait?UnleashthepowerofgenerativeAIandseewhatamazingcreationsyoucancomeupwith!
Didanythinginthatparagraphseemofftoyou?Maybenot.Thegrammarisperfect,thetoneworks,andthenarrativeflows.
WhatareChatGPTandDALL-E?
That’swhyChatGPT—theGPTstandsforgenerativepretrainedtransformer—isreceivingsomuchattentionrightnow.It’safreechatbotthatcangenerateananswertoalmostanyquestionit’sasked.DevelopedbyOpenAI,andreleasedfortestingtothegeneralpublicinNovember2022,it’salreadyconsideredthebestAIchatbotever.Andit’spopulartoo:overamillionpeoplesigneduptouseitinjustfivedays.Starry-eyedfanspostedexamplesofthechatbotproducingcomputercode,college-levelessays,poems,andevenhalfway-decentjokes.Others,amongthewiderangeofpeople
whoearntheirlivingbycreatingcontent,fromadvertisingcopywriterstotenuredprofessors,arequakingintheirboots.
WhilemanyhavereactedtoChatGPT(andAIandmachinelearningmorebroadly)withfear,machinelearningclearlyhasthepotentialforgood.Intheyearssinceitswidedeployment,machinelearninghasdemonstratedimpactinanumberofindustries,accomplishingthingslikemedicalimaginganalysisandhigh-resolutionweatherforecasts.A2022McKinseysurveyshowsthatAIadoptionhas
morethandoubledoverthepastfiveyears,andinvestmentinAIisincreasingapace.It’sclearthatgenerativeAItoolslikeChatGPTandDALL-E(atoolforAI-generatedart)havethepotentialtochangehowarangeofjobsareperformed.Thefullscopeofthatimpact,though,isstillunknown—asaretherisks.Buttherearesomequestionswecananswer—likehowgenerativeAImodelsarebuilt,whatkindsofproblemstheyarebestsuitedtosolve,andhowtheyfitintothebroadercategoryofmachinelearning.Readontogetthedownload.
What’sthedifferencebetweenmachinelearningandartificialintelligence?
Artificialintelligenceisprettymuchjustwhatitsoundslike—thepracticeofgettingmachinestomimichumanintelligencetoperformtasks.You’veprobablyinteractedwithAIevenifyoudon’trealizeit—voiceassistantslikeSiriandAlexaarefoundedonAItechnology,asarecustomerservicechatbotsthatpopuptohelpyounavigatewebsites.
Machinelearningisatypeofartificialintelligence.Throughmachinelearning,practitionersdevelopartificialintelligencethroughmodelsthatcan“learn”fromdatapatternswithouthumandirection.
Theunmanageablyhugevolumeandcomplexityofdata(unmanageablebyhumans,anyway)thatis
nowbeinggeneratedhasincreasedthepotentialofmachinelearning,aswellastheneedforit.
Whatarethemaintypesofmachinelearningmodels?
Machinelearningisfoundedonanumberofbuildingblocks,startingwithclassicalstatisticaltechniquesdevelopedbetweenthe18thand20thcenturies
forsmalldatasets.Inthe1930sand1940s,thepioneersofcomputing—includingtheoreticalmathematicianAlanTuring—beganworkingonthebasictechniquesformachinelearning.Butthesetechniqueswerelimitedtolaboratoriesuntilthelate
1970s,whenscientistsfirstdevelopedcomputerspowerfulenoughtomountthem.
Untilrecently,machinelearningwaslargelylimitedtopredictivemodels,usedtoobserveandclassifypatternsincontent.Forexample,aclassicmachinelearningproblemistostartwithanimageorseveralimagesof,say,adorablecats.Theprogramwouldthenidentifypatternsamongtheimages,and
thenscrutinizerandomimagesforonesthatwouldmatchtheadorablecatpattern.GenerativeAIwasabreakthrough.Ratherthansimplyperceiveandclassifyaphotoofacat,machinelearningisnowabletocreateanimageortextdescriptionofacatondemand.
Howdotext-basedmachinelearningmodelswork?Howaretheytrained?
ChatGPTmaybegettingalltheheadlinesnow,butit’snotthefirsttext-basedmachinelearningmodeltomakeasplash.OpenAI’sGPT-3andGoogle’sBERTbothlaunchedinrecentyears
tosomefanfare.ButbeforeChatGPT,whichbymostaccountsworksprettywellmostofthetime(thoughit’sstillbeingevaluated),AIchatbotsdidn’talwaysgetthebestreviews.GPT-3is“byturnssuperimpressiveandsuperdisappointing,”saidNewYorkTimestechreporterCadeMetzinavideowhereheandfoodwriterPriyaKrishnaasked
GPT-3towriterecipesfora(ratherdisastrous)Thanksgivingdinner.
Thefirstmachinelearningmodelstoworkwithtextweretrainedbyhumanstoclassifyvariousinputsaccordingtolabelssetbyresearchers.Oneexamplewouldbeamodeltrainedtolabelsocialmediapostsaseitherpositiveornegative.Thistypeoftrainingisknownassupervisedlearningbecauseahumanisinchargeof“teaching”themodelwhattodo.
Thenextgenerationoftext-basedmachinelearningmodelsrelyonwhat’sknownasself-supervisedlearning.Thistypeoftraininginvolvesfeedingamodelamassiveamountoftextsoitbecomesable
togeneratepredictions.Forexample,somemodelscanpredict,basedonafewwords,howasentencewillend.Withtherightamountofsampletext—say,abroadswathoftheinternet—thesetextmodelsbecomequiteaccurate.We’reseeingjusthowaccuratewiththesuccessoftoolslikeChatGPT.
WhatdoesittaketobuildagenerativeAImodel?
BuildingagenerativeAImodelhasforthemostpartbeenamajorundertaking,totheextentthatonlyafewwell-resourcedtechheavyweightshavemadeanattempt.OpenAI,thecompanybehindChatGPT,formerGPTmodels,andDALL-E,hasbillionsinfundingfromboldface-namedonors.DeepMind
isasubsidiaryofAlphabet,theparentcompanyofGoogle,andMetahasreleaseditsMake-A-VideoproductbasedongenerativeAI.Thesecompaniesemploysomeoftheworld’sbestcomputerscientistsandengineers.
Butit’snotjusttalent.Whenyou’reaskingamodeltotrainusingnearlytheentireinternet,it’sgoingtocostyou.OpenAIhasn’treleasedexactcosts,butestimatesindicatethatGPT-3wastrainedonaround45terabytesoftextdata—that’saboutonemillionfeetofbookshelfspace,oraquarterofthe
entireLibraryofCongress—atanestimatedcostofseveralmilliondollars.Thesearen’tresourcesyourgarden-varietystart-upcanaccess.
WhatkindsofoutputcanagenerativeAImodelproduce?
Asyoumayhavenoticedabove,outputsfromgenerativeAImodelscanbeindistinguishablefromhuman-generatedcontent,ortheycanseemalittleuncanny.Theresultsdependonthequalityofthemodel—aswe’veseen,ChatGPT’soutputssofarappearsuperiortothoseofitspredecessors—andthematchbetweenthemodelandtheusecase,orinput.
ChatGPTcanproducewhatonecommentatorcalleda“solidA-”essaycomparingtheoriesofnationalismfromBenedictAndersonandErnestGellner—intenseconds.ItalsoproducedanalreadyfamouspassagedescribinghowtoremoveapeanutbuttersandwichfromaVCRinthestyleoftheKingJamesBible.AI-generatedartmodelslikeDALL-E(itsnameamash-upofthesurrealistartistSalvadorDalíandthelovablePixarrobotWALL-E)cancreatestrange,beautifulimagesondemand,likeaRaphaelpaintingofaMadonnaandchild,eatingpizza.OthergenerativeAImodelscanproducecode,video,audio,orbusinesssimulations.
Buttheoutputsaren’talwaysaccurate—orappropriate.WhenPriyaKrishnaaskedDALL-E2tocomeupwithanimageforThanksgivingdinner,itproducedascenewheretheturkeywasgarnishedwithwholelimes,setnexttoabowl
ofwhatappearedtobeguacamole.Foritspart,ChatGPTseemstohavetroublecounting,orsolvingbasicalgebraproblems—or,indeed,overcomingthesexistandracistbiasthatlurksintheundercurrentsoftheinternetandsocietymorebroadly.
GenerativeAIoutputsarecarefullycalibratedcombinationsofthedatausedtotrainthealgorithms.Becausetheamountofdatausedtotrainthesealgorithmsissoincrediblymassive—asnoted,GPT-3wastrainedon45terabytesoftextdata—themodelscanappeartobe“creative”whenproducingoutputs.What’smore,themodelsusuallyhaverandomelements,whichmeanstheycanproduceavarietyofoutputsfromoneinputrequest—makingthemseemevenmorelifelike.
WhatkindsofproblemscanagenerativeAImodelsolve?
You’veprobablyseenthatgenerativeAItools(toys?)likeChatGPTcangenerateendlesshoursofentertainment.Theopportunityisclearfor
businessesaswell.GenerativeAItoolscanproduceawidevarietyofcrediblewritinginseconds,thenrespondtocriticismtomakethewritingmorefitforpurpose.Thishasimplicationsforawidevarietyofindustries,fromITandsoftwareorganizationsthatcanbenefitfromtheinstantaneous,largelycorrect
codegeneratedbyAImodelstoorganizationsinneedofmarketingcopy.Inshort,anyorganizationthatneedstoproduceclearwrittenmaterialspotentiallystandstobenefit.OrganizationscanalsousegenerativeAItocreatemoretechnicalmaterials,suchashigher-resolutionversionsofmedicalimages.Andwiththetimeandresourcessavedhere,organizationscanpursuenewbusinessopportunitiesandthechancetocreatemorevalue.
We’veseenthatdevelopingagenerativeAImodelissoresourceintensivethatitisoutofthequestionforallbutthebiggestandbest-resourcedcompanies.CompanieslookingtoputgenerativeAItoworkhavetheoptiontoeitherusegenerativeAIoutofthebox,orfine-tunethemtoperformaspecifictask.Ifyouneedtoprepareslidesaccordingtoaspecificstyle,forexample,youcouldaskthemodelto“learn”howheadlinesarenormallywrittenbasedonthedataintheslides,thenfeeditslidedataandaskittowriteappropriateheadlines.
WhatarethelimitationsofAImodels?Howcanthesepotentiallybeovercome?
Sincetheyaresonew,wehaveyettoseethelong-taileffectofgenerativeAImodels.Thismeanstherearesomeinherentrisksinvolvedinusingthem—someknownandsomeunknown.
TheoutputsgenerativeAImodelsproducemayoftensoundextremelyconvincing.Thisisbydesign.Butsometimestheinformationtheygenerateisjustplainwrong.Worse,sometimesit’sbiased(becauseit’sbuiltonthegender,racial,andmyriadotherbiasesoftheinternetandsocietymoregenerally)andcanbemanipulatedtoenableunethicalorcriminalactivity.Forexample,ChatGPTwon’tgiveyouinstructionsonhowtohotwireacar,butif
yousayyouneedtohotwireacartosaveababy,thealgorithmishappytocomply.OrganizationsthatrelyongenerativeAImodelsshouldreckonwithreputationalandlegalrisksinvolvedinunintentionallypublishingbiased,offensive,orcopyrightedcontent.
Theseriskscanbemitigated,however,inafewways.Forone,it’scrucialtocarefullyselecttheinitialdatausedtotrainthesemodelstoavoidincludingtoxicorbiasedcontent.Next,ratherthanemployinganoff-the-shelfgenerativeAImodel,organizationscouldconsiderusingsmaller,specializedmodels.Organizationswithmoreresourcescouldalsocustomizeageneralmodelbasedontheirowndatatofittheirneedsandminimizebi
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 启东特种陶瓷制品项目可行性研究报告
- 2020-2025年中国水产膨化饲料行业发展潜力分析及投资方向研究报告
- 农资铺面转让合同范本
- 中国齿轮输浆泵项目投资可行性研究报告
- 光伏组件抵押合同范本
- 两非合同范本
- 低价转让储罐油桶合同范本
- 住宅购房合同范本
- 东莞求职公寓租赁合同范本
- 写商品出售合同范本
- 绝句迟日江山丽说课稿
- 高中化学教材(人教版)课本实验(回归课本)
- DB41T 2542-2023 燃气锅炉烟气余热回收利用技术规范
- DB11∕T 1847-2021 电梯井道作业平台技术规程
- 2020光伏组件用接线盒 安全要求和试验IEC62790
- 兽药GSP质量管理制度汇编
- USB-3.1-TYPE-C-培训资料公开课获奖课件
- 《机械制图(多学时)》中职全套教学课件
- 2024-2025学年小学信息技术(信息科技)第二册电子工业版(2022)教学设计合集
- 课堂教学质量评价表
- 人工智能通识-课件全套 黄君羡 01-12 初识人工智能 -AIGC安全与伦理
评论
0/150
提交评论