




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
酸性矿坑排水对流域水体和土壤的影响
1管理社会相关的文献母区划。喜报血。第四组血容量(amd)的ph值低于3.5,这是喜过式生态能力的强化部分。Coalsandwastescontainingpyrite(FeS2)andmineralsassociatedwitharsenicareexposedtooxygenandwaterduringandaftercoalminingoperations,andcontinuetooxidizeandhydrolyze,whichproducetheAMD.AMDhasfreeacidityandcontainssolublemetalsandmetalloids,whicharetoxictoaquaticlife,wildlifeandvegetation.Acidificationofsoilcancausedamagetothefinerootsofplantsandlossofnutrientswhichmayinterfereordestroythesoilmicrobialcommunitiesrequiredforhealthyplantgrowthandmaintenance,andincreasesmetalbioavailability.EgieborandOnigaveadetailedreviewofthecurrentstateofscientificknowledgewithregardtothemagnitudeoftheproblem,thechemistryandmechanismofsulfidemineraloxidationandacidrockdrainage(ARD)formation,theroleofmicroorganismsinARDformationprocess,andtheproposedapproachesforthetreatment,control,andpreventionofARDformation.BecausethecarbonaterockshavethecapacitytoincreasepHvaluesandreducethecontentsofseveraldissolvedmetals,itisimportanttoknowtheeffectsofAMDonwatersandsoilinakarstdominatedbasin.Findingsandinterpretationsforalmostthreedecadesofresearchhavebeencontroversial;amoreobjectiveviewisnowpossibleinthelightofrecentresearchandassessment.Itisimportanttojudgethedegreeandextentofacidification,andtheneedandeffectivenessofitscontrol.BasedonalongtermrecordsofanetworkoflargestreamsdegradedbyacidminedrainageinthenorthernAppalachianhighsulfurcoalregion,Koryaketal.foundthatalloftheAlleghenyRiverdrainagebasinstationshavedemonstratedsteadyandsubstantialdeclinesinacidityandassociatedincreasesinpHandalkalinityoverthepastthreedecades,andoxidativeexhaustionofpyriticmineralsexposedbyminingisproposedasamajorfactorinfluencingthesetrends.InordertoshowtheimpactofAMDtothewaterbodiesandsoilsinabasinscale,atypicalhighAscoalmineinXinren,Guizhouwaschosenforthisstudy.Thepurposesofthisstudyare:(1)toshowthedistributionofpHandECinsurfacewatersandsoil;(2)todetermineacidificationinthebasinsystem;and(3)todiscussprocessesofAMDeffectsonsoilandwater.2u2004范围LocatedattheSWofGuizhou,alow-latitudeplateauinChina,theXingrenCountyhasamoderatesubtropicalhumidmonsoonclimate,withanannualaveragetemperatureof15.2℃andannualaverageprecipitationof1320.5mm.TherainyseasonisfromMaytoOctober,inwhich84.5%oftheannualprecipitationisavailable.Thestudyareaisatypicalkarstareawithdepressions,hoodoosandsoon.Thebedrockismainlycomposedofsedimentarycarbonaterockssuchaskarstifiedgraydolomites,dolomiticlimestonesandgraylimestones,sometimeswiththeoccurrenceofmarlsandclaysfromthePermian-Triassicperiod.XingrenCountyiswellknownforcoalandothermineralresources.Thecoalreserveswasestimatedtobemorethan45billionton.Thedevelopmentofcoalindustryenhancestheeconomicdevelopment,howevertheAMDbecameaseriousproblemtotheecologicalsysteminthearea.Thewastewatersfromcoalminingtypicallycontainhighlevelsofmetalions,suchasiron,copper,aluminum,andmanganese,aswellasmetalloidsofwhicharsenicisgenerallyofgreatestconcern.Thestudyareaisoneofthehigh-arseniccoalminingareasinXingrenwith4coalstratacontaininghighAscontent.ThecontentofAswasfoundintherangefrom100mg/kgto3.5×104mg/kg,andthehighestwasupto(3.2~3.5)×104mg/kg,muchhigherthanitsaveragecontentinChinaandtheworld(7.79mg/kgand5.0mg/kgrespectively).Thehigh-arseniccoalismainlyhostedinthePermianLongtanFormationandintheanthracite.Therealsohavesomegoldmineraldepositnearbythehigh-arseniccoal.Fig.1isamapofstudyarea.Therearetworeservoirs,theMaoshitouReservoirandtheShitouzhaiReservoirwiththecatchmentareasof1.66km2and1.17km2,respectively.Bothreservoirshavebeenbuiltforseveraldecadesandarestillusedforirrigation.IntheupstreamoftheMaoshitouReservoir,small-scaleminingofunknownproductionquantitiesoccurredfrom1990stotheearlyof2000s.Severalsmallsulfidicwaste-rockpilesarestillremainedinthearea.Thelodesoccurinsteepcountry,withslopeslocallyupto30°andataltitudesbetween1580and1630metersabovesealevel.Intheminedareas,wastematerialsweredumpedonsteepslopesresultinginmassesofunconsolidatedminewastesextendingdownslope.Coalminingwastesarecomposedofdiversematerialsrangingfromsiltyparticlesof<1mmtoboulders0.5mindiameters.Constituentsincludemetasedimentarymaterialaswellasminorsulfidefragments,pre-andpost-mineoxidationminerals,andassortedminingwaste.Uncontrolledsulfidicmaterialallowscontinuousoxidationofthewaste.Littlevegetationexistsonthewastedumps,andgulliesdrainingtheminesitearedevoidofvegetation.DrainagefromtheminesiterunsintotheMaoshitouReservoirabout500mdownstreamfromthepitheads.Duringdryperiods,drainageminedumpappearstobetheonlysourceofsurfacewatertothereservoir.ItwasfoundthatwaterintheMaoshitouReservoirwasaffectedbyAMDfromtheupstream,butwaterintheShitouzhaiReservoirwasinitsnaturalcondition.Riceproductionisthemostimportantagriculturalactivityandthepaddyfieldsareirrigatedbythewaterfromreservoirs.Whentheriverflowsdown,itdisappearsatR40andreappearsatR41,whereisbelievedthatthereexistsasubterraneanriverinthestudyarea.3关于solectedinpolusgraftingsiphinvilrasFig.1showsthedistributionofsoilandwatersamplingpointsforthisstudyarea.DO,pH,ECandtemperatureofsurfacewaterincludingAMD,riverandreservoirsweremeasuredonsitefrom2006to2008byusingportablepHmeter,ECmeterandDOmeter(Multi-meters340i,Germany).Allofthewatersampleswerefilteredthrough0.45μmfiltersbeforecollectedinpolyethylenebottles.Sampleswerestoredinarefrigeratorat4℃atthelaboratorybeforeanalysis.Majoranionsandcationsweremeasuredbyionchromatography(IC,ICS-90,DionexCorp.,Sunnyvale,CA,USA)andAtomicspectrophotometer(USA),respectively.Soilsamplesweretakenat39pointsinthepaddyfieldsdownstreamofthereservoirstostudythepHdistributionoftopsoils(Fig.1).Additionally,a100cmdeeppitwasdugatS01andsoilsweresampledat10,20,30,40,50,60,70,80,90and100cmindepth.Foreachsoilsample,25mLdistilledwaterwastakenintothebottlewith10gsoilsampleinit.ThebottlewasshakenforminutesbeforethepHvaluesofsoilweremeasuredbyportablepHmeter.Also,theinformationsuchaswateruse,riceproduction,landuseandsoonwasgottenbyinterviewingtothelocalpeople.4产品系统4.1通过转色行为获取reelvificipar,u2004,3.,5.,4.,4.,5.,4.,5.,4.,5.,5.,4.,4.,5.,7.,3.,5.,4.,3.,5.,7.,7.,4.,7.,3.,5.,5.,5.,5.,5.,7.,4.,5.,5.,7.,5.,5.,5.,7.,7.4.3.3.3.,5.,5.,7.,7.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.4和4-dr在meTheAMDexistsinseveralminingpitsanddrainstothereservoirsdownstream.ThesurfacewatersintheupstreamoftheMaoshitouReservoirwereconsideredasAMDbecauseofdifficultytoidentifytheallsourcesdischargingtothereservoir.ThepHvaluesofAMD(Tab.1)rangedfrom1.93to4.01withanaverageoflessthan3.TheaverageECwas2526μm/cmrangingfrom550to7240μm/cm.TheaverageofDOintheAMDwas5.09mg/L,littlehigherthanthatintheMaoshitouReservoir.Whereacidminedrainagewatersfromthedumpinthemineareaenteredthereservoir,theaquaticandbacksideplantcommunitiesdisappeared.Moreover,therewereabundantFe-richyellow-browngelatinousprecipitatescoatingtheriverbedorthebottomofthereservoirandfloatinginreservoir,andmineral-saltencrustationsontheriverbankandbed.4.2主要参数估计AsshowninTab.1,waterintheShitouzhaiReservoirwasneutralandtheECandDOvalueswere99μm/cmand5.81mg/L,respectively.However,becauseoftheimpactfromdumpinthemineareathepHvalueintheMaoshitouReservoirdecreasedsharplytoanaveragevalueof3.09andtheECvaluejumpedupto1275μm/cm.ThepHandECintheMaoshitouReseveroirrangedfrom2.72to3.51andfrom591to1996μm/cm,respectively.TheaverageDOvalueintheMaoshitouReservoirwasalsolessthanthatintheShitouzhaiReservoir.BecauseofthelowpH,noaquaticlifecouldbefoundinthereservoir.TheAMDalsohadstrongimpactontheaquaticecosystemintheriverdownstreamofthereservoir.4.3indexrafterrace-pcrsiph/atr3.8kmupst东北部roxraft/atrace净化inter联合保护/投资index/atraceract/atracerat5.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.4.3.3.3.3.3.4.3.3.4.3.4和3.4.3.4.3.4.3.4.3.4.3.4.3.3.3.4.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.4和5.8运用phratchenratchenratchenratchenratchThepH,ECandDOvaluesinriversnotaffectedbyacidicwaterrangedfrom6.06to7.98,31to248μm/cm,and6.47to7.01mg/L,respectively.Fig.2showsthevariationsofEC,DOandpHalongtheriverfromtheMaoshidouReservoir,respectively.Forconvenience,theR04watersamplingpointattheheadofMaoshidouReservoirwassetasthestartingpointfromwhichtheacidwaterfloweddowntothebasin.Whenitrunsthroughthebasin,pHchangedlittleuntil3.8kmdownstreamfromthereservoir.Intheintervalbetween3.8kmto5km,itbecameasubterraneanriver.ThepHvalueincreasedto4.4whenitflowedoutatpointof5kmdownstreamfromthereservoir.Ontheotherhand,ECofriverwaterdecreasedfrom1268μm/cmattheoutletofMaoshitouReservoirto953μm/cmatR40.Furthermore,ECvalueofwaterbecame563μm/cmattheoutletofsubterraneanriveratR41.Intheopenchannelcondition,theDOvaluedecreasedfrom10.9to9.0mg/LbeforeitdisappearedatR40.Whenitflowedintheclosedchannelasasubterraneanriver,DOvaluesdecreasedto6.2mg/LattheinletofR41.TheDOvaluerecoveredto8.5mg/LatR42becauseofaerationintheopenchannel.Throughawholeyear,sulfideoxidationandmineral-dissolutionprocessesgeneratedacidminedrainagewatersthatmightenterlocalsurfacewatersandaquifers.ChangingredoxconditionscommonlyledtotheformationofFe-richprecipitatesontheriverbanksandbed.Thesevisibleeffectsofacidminedrainagepollutioncontinuedfor5kmdownstreamwherethestreamprogressivelyrecoveredtoexhibitalittletypicalaquaticecosystemwithdiverseplantspecies.4.4清苏霍姆性别清cq补—SoilOvertime,soilsirrigatedbyacidicwaterbecomeprogressivelymoreacidasaresultoftheseprocessesanddevelopastrongdepthgradientfromthesurface,throughtomineralhorizons,downtotheunweatheredmaterialoftheparentbedrock.Thetransitionlayers,ordepthhorizons,havedifferentchemicalcharacteristicsandresponsestoacidicwaterinputorthethroughflowofsoilwater.Atpresent,thepHofsoilintheareaunaffectedbyAMDwasabove5.5averagely.Fig.3showstheverticaldistributionofpHinsoilofpaddyfieldirrigatedbylowpHriverwateratS01,wherericeproductionwasverylowaccordingtotheinterviewoflocalpeople.ItwasfoundthatthepHvaluesofsoilfromthesurfaceto90cmindepthwerelessthan3.9withanaverageof3.7,whichwasmuchlowerthanthatinthenaturalcondition.Itwasbelievedthatthebuffercapacityofsoiltoacidicirrigationwatervariedwithdepths.ThelowestpHvaluewasaround3.3inthelayerof70to80cmindepthfromthesurface.5子阶段5.1rectityofficicipacisiph+erincipacisiph+authoperationreacityrectityrectitysoftings和第三部分关于“rectity”的表达,4.4.4.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.4.3.4.3.4.3.3.4.3.3.4.3.4.3.4.3.4.3.4.3.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.3.3.4.3.4.3.4.3.4.3.3.4.3.4.3.4.3.3.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4.3.4和5.5.5.5.4.TherearetwomajorprocessestoregulatethepHvalueofsurfacewaterinthestudyarea.Oneisthedilutionbythedischargeofgroundwateralongthechannelortheinflowfromotherunpollutedriver.Theotheristhechemicalreactionbetweentheacidicriverwaterandrockorsedimentsattheriverbed.AMDisusuallycharaterizedbyitslowpH,highECandhighconcentrationofSO2−442-ionastheresultofsulfideoxidationinthemineoritsdump.Inthestudyarea,sulfidesweremainlypyriteandthefollowingreactionwilloccurwhenoxygenorFe3+areavailable.Theoverallreactioncanbewrittenas:FeS2+14Fe3++8H2O→15Fe2++2SO2−442-+16H+Fe3+isthepredominantoxidantatlowpHandisusuallythelimitingreagent.Theinorganicoxidationrateofferrousion(Fe2+)belowpH3isslow.Acidophilicorganisms,however,cangenerateenergybyconvertingferrousirontoferriciron.Asaresult,thewaterfromthecoalminebecameacidicbecauseoftheincreaseoffreeH+ion.Extensivedistributionsofdolomites,dolomiticlimestonesandgraylimestonescanbefoundintheriverbed.Whenacidicwaterflowedintotheriver,thereactiondescribedabovehasgeneratedH2SO4andfreeH+ionforcarbonatesolutionatthebanksandbedsoftheriver.Balancesweredelicateinsuchsystemandtheproportionsofreactantswerevariedandreplacementornetprecipitationoccurredattheriverbed.Itwasfoundgypsumintheformofthincoatsatthesurfaceofgrassleavesortherockblocksalongtheriverbanks.IncontactwithAMD,thelimestoneofriverbeddissolves,producingcarbonatealkalinitywithincreasesinpH.However,theformationofferricoxyhydroxidesinthereactioncoatlimestoneandresultinoxidizingenvironmentsandeliminationofanyfurtherneutralizingcapacity.Thetypicalreactionsinvolvedinriverbedneutralizationofacidmineeffluentare:CaCO3(s)+SO2−442-+2H+→CaSO4(s)+H2O+CO2CaCO3(s)+2H+→Ca2++H2O+CO2Also,otherreactionscanbefoundasthefollowing:CaCO3(s)+SO2−442-+2H++H2O→CaSO4·2H2O(s)+CO23CaCO3(s)+Fe3++3H+→3Ca2++Fe(OH)3(s)+3CO2ItwastoldthatthewateratpHof3.0willdissolve50%moreCaCO3thanthenaturalonetoreactwiththebarerockattheriverbed.Infact,thereweremanycaveswithintheblocksandmostofCaCO3componenthasdisappearedduringthechemicalreactionwhenacidicwaterflowedover.Asaresult,therockblocksattheriverbedinthestudyareaweresobrittlethattheywerebrokenintopiecesjustpushingwithfingers.Ontheotherhand,depositionofsuspendedmatterfromtherivercanhaveasignificanteffectonhyporheicexchangeandadverselyimpactonthebenthicandaquaticecosystems.Itwasfoundthattheyellowsuspendedmattersbroughtbytheacidicwatercoveredtheriverbedinthethicknessofafewmillimeterstoonecentimeterwhenitflowedover.FinecolloidalparticleswiththepHlessthan4.0carriedalargepollutantloadinthecontaminatedriver.Inaddition,depositionoffinesintoriverbedsreducedgreatlyhyporheicexchange,whichpreventedtheacidicriverwaterreactfurtherwithlimestoneofriverbed.Asaresult,pHofriverwaterwaslowevenitflowedacrossthestudyarea.Thereweretwochemicaltypes,Ca2+-HCO-3andCa2+-SO2-4inthesurfacewaterofstudyarea(Tab.1).Theformerwasthewaterwithouteffectsofacidicwater,andthelatterwasfoundintheAMD,theMaoshitouRiverandtheriverwithpHvaluebelow5.0.Also,ItcanbeconsideredthatCa2+wasthedominatecationinthesurfacewaters,butthedominateanionwasSO2−442-orHCO-3,dependingonthewaterwithorwithouteffectsofAMD.Fig.4showstherelationshipbetweenECandSO2−442-concentrationinwatersofstudyarea.ItwasfoundthattheconcentrationofSO2−442-increasedwithEC.Astheacidicwaterfloweddownfromthepitheadsofcoalmine,ECvaluedecreasedcontinuallywiththedecreaseofSO2-4concentrationalongtheriver.Whenthewaterflowedalongthesubterreanriverinthestudyarea,DOdecreasedsharply(Fig.2).Itinhibitedoxygenpenetrationandpreventedtheoxidationofferrousironintheacidicwater.Asaresult,thepHofwaterrecoveredmorequicklythanthatintheopenchannel.5.2u2004范围/soel-sit-sit-sit-sit-sit.国际习惯法第20条第3和3.Soilsareprincipallytheproductofthebreakdownbyweatheringofgeologicalmaterials,eitherthebedrockorthedriftmaterialsbroughtfromamoredistantlocation.Otherconstituentscomefromthedecayofplantandanimalmaterialsintheuppersoilhorizons.Innaturalcondition,thedegreetowhichsoilacidityisneutralizeddependsonthebasereserve,whichinturnisdependentontherateofweatheringofgeologicalmaterials.Thegenerationandreserveofaciditywithinsoilsgreatlyexceedsthatdepositedinrain,althoughincreasingacidificationofsoilshasoccurredoverthelast100years.However,thesoilsarechanginggreatlyinareassubjecttoAMDwaters,whichismainlycontrolledbyphysical(andhydrological)andchemicalprocesseswithlimitedbiologicalactivityinthesoil.Land-usepracticesinfluencetheacidificationofsoils;theuseofacidwaterforirrigationleadstoenhancedacidification.Farfromtheindustrializedregion,thepHofrainwaterisexpectedbetween5.6and6.4inthestudyarea.InthedownstreamoftheMaoshitouReservoir,thereweremanypaddyfieldsirrigatedwiththecontaminatedacidwaterbylocalpeople.Fig.5showsthefrequencydistributionsofpHvaluesforthewatersofAMDandtheMaoshitouReservoir,aswellasthetopsoilswithandwithouteffectsofacidicirrigationwater.AllhadthenormaldistributionsfortheirpH.ItwasfoundthattheexpectedvalueofpHwas3.0fortheAMDandacidicwaterreservoir.However,themostfrequencyofpHvaluesinthesoilwithandwithoutacidicwaterirrigationwere5.0and6.5,respectively.AccordingtotheclimatologicallycharacteristicsinGuizhouprovince,itcanbeestimatedthatevaporationwillbe800mm/yearinthestudyarea.Asaresult,thereshouldbemaximally8.64×105m3ofacidwaterwithitspHaround3flowingoutfromtheMaoshitouReservoir,partofwhichwasusedforirrigationforadecade.Acidsintheirrigationwateralsocontributedtotheweatheringprocess.Thereleaseofbasecationswasneutralizing,i.e.,theyconsumedthehydrogenions—thelowerthepHoftheirrigationwater,thegreaterthereleaseofcations.OrganicmaterialandpHdecreasedwithdepth,whichcausedweatheredcationstoredistributebetweenthesoilexchangesitesandtheinfiltratingwater.Inthestudyarea,sulfatefromacidicirrigationwaterinputtosoilsandcausedananionshiftinsoildrainagefromacompositiondominatedbyHCO-3andorganicanionstoonedominatedbySO2−442-.TheincreaseinSO2−442-wasgreateronanequivalentbasisthanthedecreaseincarbonateandorganicanions,raisingtheionicstrengthofthesoilsolution.Soilswithasufficientsupplyofbasecationsfromweatheringcanabsorbandneutralizetheaciditygeneratedwithinthesoilsandfromacidirrigationwaterwithoutacidification,butwhenacidinputswereinexcessofthiscapacity,thesoilbecomesincreasinglyacidic.6aciditysofterityofficicipa回/回采sindthince,krafterization,krafts,krafts,krafts,krafts,krafts,krafts,krafts,krafts,krafts,krafts,krafts,krafts,krafts,krafts,krafts,krafts,krafts,krafts,krafts,krafts,krafts,krafts,krafts,krafts,krafts,krafts,krafts,krafts,krafts,krafts,krafts,krafts,krafts,krafts,krafts,krafts,krafts,krafts,krafts,krafts,krafts,krafts,krafts,krafts,krafts,krafts,kra
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 汽车展会活动授权及运营合同
- 旅游线路策划合作协议
- 车辆挂靠与汽车维修保养服务协议
- 绿色能源项目厂房抵押贷款协议
- 礼仪仪态培训标准体系
- 2025年汽车销售协议
- 2025年农村房屋转让协议书
- 2025年明股实债协议
- 肾上腺肿瘤病人的护理
- 2025年江苏省镇江市新区中考数学二模试卷
- 厂房工程施工组织设计
- 2024“揭榜挂帅”项目合同
- 2024年广东省广州市增城区中考英语二模试卷
- 【MOOC】心理学与生活-南京大学 中国大学慕课MOOC答案
- 食堂的管理方案
- 危重症患者护理
- 冲压机床安全操作规程(3篇)
- 治疗性血小板去除术
- 雇人干活免责协议书(2篇)
- 2024版《糖尿病健康宣教》课件
- 脓毒症性凝血病诊疗中国专家共识解读
评论
0/150
提交评论