陕西省西安市蓝田县2024届高二数学第一学期期末经典试题含解析_第1页
陕西省西安市蓝田县2024届高二数学第一学期期末经典试题含解析_第2页
陕西省西安市蓝田县2024届高二数学第一学期期末经典试题含解析_第3页
陕西省西安市蓝田县2024届高二数学第一学期期末经典试题含解析_第4页
陕西省西安市蓝田县2024届高二数学第一学期期末经典试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省西安市蓝田县2024届高二数学第一学期期末经典试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数在上的最小值为()A. B.C.-1 D.2.设是可导函数,当,则()A.2 B.C. D.3.若正三棱柱的所有棱长都相等,D是的中点,则直线AD与平面所成角的正弦值为A. B.C. D.4.抛物线的焦点到准线的距离是A.2 B.4C. D.5.已知正实数a,b满足,若不等式对任意的实数x恒成立,则实数m的取值范围是()A. B.C. D.6.已知焦点在轴上的双曲线的一条渐近线方程为,则该双曲线的离心率为()A. B.C.2 D.7.已知的周长等于10,,通过建立适当的平面直角坐标系,顶点的轨迹方程可以是()A. B.C. D.8.如图,在直三棱柱中,,,E是的中点,则直线BC与平面所成角的正弦值为()A. B.C. D.9.“五一”期间,甲、乙、丙三个大学生外出旅游,已知一人去北京,一人去两安,一人去云南.回来后,三人对去向作了如下陈述:甲:“我去了北京,乙去了西安.”乙:“甲去了西安,丙去了北京.”丙:“甲去了云南,乙去了北京.”事实是甲、乙、丙三人陈述都只对了一半(关于去向的地点仅对一个).根据以上信息,可判断下面说法中正确的是()A.甲去了西安 B.乙去了北京C.丙去了西安 D.甲去了云南10.为推动党史学习教育各项工作扎实开展,营造“学党史、悟思想、办实事、开新局”的浓厚氛围,某校党委计划将中心组学习、专题报告会、党员活动日、主题班会、主题团日这五种活动分5个阶段安排,以推动党史学习教育工作的进行,若主题班会、主题团日这两个阶段相邻,且中心组学习必须安排在前两阶段并与党员活动日不相邻,则不同的安排方案共有()A.10种 B.12种C.16种 D.24种11.若,则下列不等式不能成立是()A. B.C. D.12.直线关于直线对称的直线方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知A(1,3),B(5,-2),点P在x轴上,则使|AP|-|BP|取最大值的点P的坐标是________14.有公共焦点,的椭圆和双曲线的离心率分别为,,点为两曲线的一个公共点,且满足,则的值为______15.过点作圆的两条切线,切点为A,B,则直线的一般式方程为___________.16.若,满足约束条件,则的最小值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列的前n项和为Sn,S9=81,,求:(1)Sn;(2)若S3、、Sk成等比数列,求k18.(12分)如图,在四棱锥中,侧面底面ABCD,侧棱,底面ABCD为直角梯形,其中,,,(1)求证:平面ACF;(2)在线段PB上是否存在一点H,使得CH与平面ACF所成角的正弦值为?若存在,求出线段PH的长度;若不存在,请说明理由19.(12分)已知三棱柱的侧棱垂直于底面,,,,,分别是,的中点.(Ⅰ)证明:平面;(Ⅱ)求二面角的余弦值.20.(12分)已知椭圆的焦距为,点在椭圆上.过点的直线l交椭圆于A,B两点.(1)求该椭圆的方程;(2)若点P为直线上的动点,记直线PA,PM,PB的斜率分别为,,.求证:,,成等差数列.21.(12分)某企业新研发了一种产品,产品的成本由原料成本及非原料成本组成.每件产品的非原料成本(元)与生产该产品的数量(千件)有关,经统计得到如下数据:x12345678y56.53122.7517.815.9514.51312.5根据以上数据绘制了散点图观察散点图,两个变量间关系考虑用反比例函数模型和指数函数模型分别对两个变量的关系进行拟合.已求得用指数函数模型拟合的回归方程为,与x的相关系数.(1)用反比例函数模型求y关于x的回归方程;(2)用相关系数判断上述两个模型哪一个拟合效果更好(精确到0.001),并用其估计产量为10千件时每件产品非原料成本;(3)根据企业长期研究表明,非原料成本y服从正态分布,用样本平均数作为的估计值,用样本标准差s作为的估计值,若非原料成本y在之外,说明该成本异常,并称落在之外的成本为异样成本,此时需寻找出现异样成本的原因.利用估计值判断上述非原料成本数据是否需要寻找出现异样成本的原因?参考数据(其中):0.340.1151.531845777.55593.0630.70513.9参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为:,,相关系数.22.(10分)如图,已知顶点,,动点分别在轴,轴上移动,延长至点,使得,且.(1)求动点的轨迹;(2)过点分别作直线交曲线于两点,若直线的倾斜角互补,证明:直线的斜率为定值;(3)过点分别作直线交曲线于两点,若,直线是否经过定点?若是,求出该定点,若不是,说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】求出函数的导函数,根据导数的符号求出函数的单调区间,再根据函数的单调性即可得出答案.【详解】解:因为,所以,当时,,单调递减;当时,,单调递增,故.故选:D.2、C【解析】由导数的定义可得,即可得答案【详解】根据题意,,故.故选:C3、A【解析】建立空间直角坐标系,得到相关点的坐标后求出直线的方向向量和平面的法向量,借助向量的运算求出线面角的正弦值【详解】取AC的中点为坐标原点,建立如图所示的空间直角坐标系设三棱柱的棱长为2,则,∴设为平面的一个法向量,由故令,得设直线AD与平面所成角为,则,所以直线AD与平面所成角的正弦值为故选A【点睛】空间向量的引入为解决立体几何问题提供了较好的方法,解题时首先要建立适当的坐标系,得到相关点的坐标后借助向量的运算,将空间图形的位置关系或数量关系转化为向量的运算处理.在解决空间角的问题时,首先求出向量夹角的余弦值,然后再转化为所求的空间角.解题时要注意向量的夹角和空间角之间的联系和区别,避免出现错误4、D【解析】因为抛物线方程可化为,所以抛物线的焦点到准线的距离是,故选D.考点:1、抛物线的标准方程;2、抛物线的几何性质.5、D【解析】利用基本不等式求出的最小值16,分离参数即可.【详解】因为,,,所以,当且仅当,即,时取等号由题意,得,即对任意的实数x恒成立,又,所以,即故选:D6、D【解析】由题意,化简即可得出双曲线的离心率【详解】解:由题意,.故选:D7、A【解析】根据椭圆的定义进行求解即可.【详解】因为的周长等于10,,所以,因此点的轨迹是以为焦点的椭圆,且不在直线上,因此有,所以顶点的轨迹方程可以是,故选:A8、D【解析】以,,的方向分別为x轴、y轴、z轴的正方向,建立空间直角坐标系,利用向量法即可求出答案.【详解】解:由题意知,CA,CB,CC1两两垂直,以,,的方向分別为x轴、y轴、z轴的正方向,建立如图所示的空间直角坐标系,则,,,,设平面的法向量为,则令,得.因为,所以,故直线BC与平面所成角的正弦值为.故选:D.9、D【解析】根据题意,先假设甲去了北京正确,则可分析其他人的陈述是否符合题意,再假设乙去西安正确,分析其他人的陈述是否符合题意,即可得答案.【详解】由题意得,甲、乙、丙三人的陈述都只对了一半,假设甲去了北京正确,对于甲的陈述:则乙去西安错误,则乙去了云南;对于乙的陈述:甲去了西安错误,则丙去了北京正确;对于丙的陈述:甲去了云南错误,乙去了北京也错误,故假设错误.假设乙去了西安正确,对于甲的陈述:则甲去了北京错误,则甲去了云南;对于乙的陈述:甲去了西安错误,则丙去了北京正确;对于丙的陈述:甲去了云南正确,乙去了北京错误,此种假设满足题意,故甲去了云南.故选:D10、A【解析】对中心组学习所在的阶段分两种情况讨论得解.【详解】解:如果中心组学习在第一阶段,主题班会、主题团日在第二、三阶段,则其它活动有2种方法;主题班会、主题团日在第三、四阶段,则其它活动有1种方法;主题班会、主题团日在第四、五阶段,则其它活动有1种方法,则此时共有种方法;如果中心组学习在第二阶段,则第一阶段只有1种方法,后面的三个阶段有种方法.综合得不同的安排方案共有10种.故选:A11、C【解析】利用不等式的性质可判断ABD,利用赋值法即可判断C,如.【详解】解:因为,所以,所以,,,故ABD正确;对于C,若,则,故C错误.故选:C.12、C【解析】先联立方程得,再求得直线的点关于直线对称点的坐标为,进而根据题意得所求直线过点,,进而得直线方程.【详解】解:联立方程得,即直线与直线的交点为设直线的点关于直线对称点的坐标为,所以,解得所以直线关于直线对称的直线过点,所以所求直线方程的斜率为,所以所求直线的方程为,即故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】首先求得点A关于x轴的对称点,然后数形结合结合直线方程求解点P的坐标即可.【详解】点A(1,3)关于x轴的对称点为A′(1,-3),如图所示,连接A′B并延长交x轴于点P,即为所求直线A′B的方程是y+3=(x-1),即.令y=0,得x=13则点P的坐标是.【点睛】本题主要考查直线方程的应用,最值问题的求解,等价转化的数学思想等知识,意在考查学生的转化能力和计算求解能力.14、4【解析】可设为第一象限的点,,,求出,,化简即得解.【详解】解:可设为第一象限的点,,,由椭圆定义可得,由双曲线的定义可得,可得,,由,可得,即为,化为,则故答案为:415、【解析】已知圆的圆心,点在以为直径的圆上,两圆相减就是直线的方程.【详解】,圆心,点在以为直径的圆上,,所以圆心是,以为直径的圆的圆的方程是,直线是两圆相交的公共弦所在直线,所以两圆相减就是直线的方程,,所以直线的一般式方程为.故答案为:【点睛】结论点睛:过圆外一点引圆的切线,那么以圆心和圆外一点连线段为直径的圆与已知圆相减,就是切点所在直线方程,或是两圆相交,两圆相减,就是公共弦所在直线方程.16、0【解析】作出约束条件对应的可行域,当目标函数过点时,取得最小值,求解即可.【详解】作出约束条件对应的可行域,如下图阴影部分,联立,可得交点为,目标函数可化为,当目标函数过点时,取得最小值,即.故答案为:0.【点睛】本题考查线性规划,考查数形结合的数学思想的应用,考查学生的计算求解能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)Sn=n2(2)11【解析】(1)由等差数列前n项和公式与下标和性质先求,然后结合可解;(2)由(1)中结论和已知列方程可解.【小问1详解】由,解得,又∵,∴,,∴【小问2详解】∵S3,S17–S16,Sk成等比数列,∴S3Sk=(S17–S16)2=,即9k2=332,解得:k=1118、(1)证明见解析(2)存在,的长为或,理由见解析.【解析】(1)建立空间直角坐标系,利用向量法证得平面.(2)设,求出,根据与平面所成角的正弦值列方程,由此求得,进而求得的长.小问1详解】依题意,在四棱锥中,侧面底面ABCD,侧棱,底面ABCD为直角梯形,其中,,,,以为空间坐标原点建立如图所示空间直角坐标系,,,设平面法向量为,则,故可设,由于,所以平面.【小问2详解】存在,理由如下:设,,,,依题意与平面所成角的正弦值为,即,,解得或.,即的长为或,使与平面所成角的正弦值为.19、(1)见解析;(2).【解析】分析:依题意可知两两垂直,以点为原点建立空间直角坐标系,(1)利用直线的方向向量和平面的法向量垂直,即可证得线面平面;(2)求出两个平面的法向量,利用两个向量的夹角公式,即可求解二面角的余弦值.详解:依条件可知、、两两垂直,如图,以点为原点建立空间直角坐标系.根据条件容易求出如下各点坐标:,,,,,,,.(Ⅰ)证明:∵,,是平面的一个法向量,且,所以.又∵平面,∴平面;(Ⅱ)设是平面的法向量,因为,,由,得.解得平面的一个法向量,由已知,平面的一个法向量为,,∴二面角的余弦值是.点睛:本题考查了立体几何中的面面垂直的判定和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,明确角的构成.同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.20、(1);(2)证明见解析.【解析】(1)根据焦点坐标及椭圆上的点,利用椭圆的定义求出a,再由关系求b,即可得解;(2)分直线斜率存在与不存在两种情况讨论,利用斜率公式计算出,根据等差中项计算,即可证明成等差数列.【小问1详解】∵椭圆的焦距,椭圆的两焦点坐标分别为,又点在椭圆上,,即.该椭圆方程为.【小问2详解】设.当直线l的斜率为0时,其方程为,代入,可得.不妨取,则,成等差数列.当直线l的斜率不为0时,设其方程为,由,消去x得.即,成等差数列,综上可得,,成等差数列.21、(1)(2)反比例函数模型拟合效果更好,产量为10千件时每件产品的非原料成本约为11元,(3)见解析【解析】(1)令,则可转化为,求出样本中心,回归方程的斜率,转化求回归方程即可,(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论