山西省太原市山西大学附中2023-2024学年数学高二上期末教学质量检测试题含解析_第1页
山西省太原市山西大学附中2023-2024学年数学高二上期末教学质量检测试题含解析_第2页
山西省太原市山西大学附中2023-2024学年数学高二上期末教学质量检测试题含解析_第3页
山西省太原市山西大学附中2023-2024学年数学高二上期末教学质量检测试题含解析_第4页
山西省太原市山西大学附中2023-2024学年数学高二上期末教学质量检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省太原市山西大学附中2023-2024学年数学高二上期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.将数列中的各项依次按第一个括号1个数,第二个括号2个数,第三个括号4个数,第四个括号8个数,第五个括号16个数,…,进行排列,,,…,则以下结论中正确的是()A.第10个括号内的第一个数为1025 B.2021在第11个括号内C.前10个括号内一共有1025个数 D.第10个括号内的数字之和2.在等差数列中,若的值是A.15 B.16C.17 D.183.已知曲线C的方程为,则下列结论正确的是()A.当时,曲线C为圆B.“”是“曲线C为焦点在x轴上的双曲线”的充分而不必要条件C.“”是“曲线C为焦点在x轴上的椭圆”的必要而不充分条件D.存在实数k使得曲线C为双曲线,其离心率为4.命题“,均有”的否定为()A.,均有 B.,使得C.,使得 D.,均有5.若方程表示双曲线,则此双曲线的虚轴长等于()A. B.C. D.6.圆上到直线的距离为的点共有A.个 B.个C.个 D.个7.从装有2个红球和2个白球的袋内任取2个球,那么互斥而不对立的两个事件是()A.取出的球至少有1个红球;取出的球都是红球B.取出的球恰有1个红球;取出的球恰有1个白球C.取出的球至少有1个红球;取出的球都是白球D.取出的球恰有1个白球;取出的球恰有2个白球8.已知等比数列满足,,则数列前6项的和()A.510 B.126C.256 D.5129.直线且的倾斜角为()A. B.C. D.10.若抛物线焦点与椭圆的右焦点重合,则的值为A. B.C. D.11.实数m变化时,方程表示的曲线不可以是()A.直线 B.圆C椭圆 D.双曲线12.已知等差数列的前n项和为,且,,若(,且),则i的取值集合是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,则满足实数的取值范围是__14.牛顿迭代法又称牛顿-拉夫逊方法,它是牛顿在17世纪提出的一种在实数集上近似求解方程根的一种方法.具体步骤如下:设r是函数y=f(x)的一个零点,任意选取x0作为r的初始近似值,作曲线y=f(x)在点(x0,f(x0))处的切线l1,设l1与x轴交点的横坐标为x1,并称x1为r的1次近似值;作曲线y=f(x)在点(x1,f(x1))处的切线l2,设l2与x轴交点的横坐标为x2,并称x2为r的2次近似值.一般的,作曲线y=f(x)在点(xn,f(xn))(n∈N)处的切线ln+1,记ln+1与x轴交点的横坐标为xn+1,并称xn+1为r的n+1次近似值.设f(x)=x3+x-1的零点为r,取x0=0,则r的2次近似值为________15.如图,把正方形纸片沿对角线折成直二面角,则折纸后异面直线,所成的角为___________.16.已知椭圆:的右焦点为,且经过点(1)求椭圆的方程以及离心率;(2)若直线与椭圆相切于点,与直线相交于点.在轴是否存在定点,使?若存在,求出点的坐标;若不存在,说明理由三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)书籍是精神世界的入口,阅读让精神世界闪光,阅读逐渐成为许多人的一种生活习惯,每年4月23日为世界读书日.某研究机构为了解当地年轻人的阅读情况,通过随机抽样调查了100位年轻人,对这些人每天的阅读时间(单位:分钟)进行统计,得到样本的频率分布直方图,如图所示:(1)求的值;(2)为了进一步了解年轻人的阅读方式,研究机构采用分层抽样的方法从每天阅读时间位于,和的年轻人中抽取5人,再从中任选2人进行调查,求其中至少有1人每天阅读时间位于的概率.18.(12分)已知数列的前项和,数列是各项均为正数的等比数列,其中,且成等差数列.(1)求的通项公式;(2)设,求数列的前项和.19.(12分)已知数列{}的首项=2,(n≥2,),,.(1)证明:{+1}为等比数列;(2)设数列{}的前n项和,求证:.20.(12分)已知椭圆C的两焦点分别为,长轴长为6⑴求椭圆C的标准方程;⑵已知过点(0,2)且斜率为1的直线交椭圆C于A、B两点,求线段AB的长度21.(12分)如图,在多面体ABCEF中,和均为等边三角形,D是AC的中点,(1)证明:(2)若平面平面ACE,求二面角的余弦值.22.(10分)已知双曲线的左、右焦点分别为,过作斜率为的弦.求:(1)弦的长;(2)△的周长.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由第10个括号内的第一个数为数列的第512项,最后一个数为数列的第1023项,进行分析求解即可【详解】由题意可得,第个括号内有个数,对于A,由题意得前9个括号内共有个数,所以第10个括号内的第一个数为数列的第512项,所以第10个括号内的第一个数为,所以A错误,对于C,前10个括号内共有个数,所以C错误,对于B,令,得,所以2021为数列的第1011项,由AC选项的分析可得2021在第10个括号内,所以B错误,对于D,因为第10个括号内的第一个数为,最后一个数为,所以第10个括号内的数字之和为,所以D正确,故选:D【点睛】关键点点睛:此题考查数列的综合应用,解题的关键是由题意确定出第10个括号内第一个数和最后一个数分别对应数列的哪一项,考查分析问题的能力,属于较难题2、C【解析】由已知直接利用等差数列的性质求解【详解】在等差数列{an}中,由a1+a2+a3=3,得3a2=3,即a2=1,又a5=9,∴a8=2a5-a2=18-1=17故选C【点睛】本题考查等差数列的通项公式,考查等差数列的性质,是基础题3、C【解析】根据椭圆、双曲线的定义及简单几何性质计算可得;【详解】解:由题意,曲线C的方程为,对于A中,当时,曲线C的方程为,此时曲线C表示椭圆,所以A错误;对于B中,当曲线C的方程为表示焦点在x轴上的双曲线时,则满足,解得,所以“”是“曲线C为焦点在x轴上的双曲线”的必要不充分条件,所以B不正确;对于C中,当曲线C的方程为表示焦点在x轴上的椭圆时,则满足,解得,所以“”是“曲线C为焦点在x轴上的双曲线”的必要不充分条件,所以C正确;对于D中,当曲线C的方程为表示双曲线,且离心率为时,此时双曲线的实半轴长等于虚半轴长,此时,解得,此时方程表示圆,所以不正确.故选:C.4、C【解析】全称命题的否定是特称命题【详解】根据全称命题的否定是特称命题,所以命题“,均有”的否定为“,使得”故选:C5、B【解析】根据双曲线标准方程直接判断.【详解】方程即为,由方程表示双曲线,可得,所以,,所以虚轴长为,故选:B.6、C【解析】求出圆的圆心和半径,比较圆心到直线的距离和圆的半径的关系即可得解.【详解】圆可变为,圆心为,半径为,圆心到直线的距离,圆上到直线的距离为的点共有个.故选:C.【点睛】本题考查了圆与直线的位置关系,考查了学生合理转化的能力,属于基础题.7、D【解析】利用互斥事件、对立事件的定义逐一判断即可.【详解】A答案中的两个事件可以同时发生,不是互斥事件B答案中的两个事件可以同时发生,不是互斥事件C答案中的两个事件不能同时发生,但必有一个发生,既是互斥事件又是对立事件D答案中的两个事件不能同时发生,也可以都不发生,故是互斥而不对立事件故选:D【点睛】本题考查的是互斥事件和对立事件的概念,较简单.8、B【解析】设等比数列的公比为,由题设条件,求得,再结合等比数列的求和公式,即可求解.【详解】设等比数列的公比为,因为,,可得,解得,所以数列前6项的和.故选:B.【点睛】本题主要考查了等比数列的通项公式,以及等比数列的前项和公式的应用,其中解答中熟记等比数列的通项公式和求和公式,准确计算是解答的关键,着重考查推理与运算能力.9、C【解析】由直线方程可知其斜率,根据斜率和倾斜角关系可得结果.【详解】直线方程可化为:,直线的斜率,直线的倾斜角为.故选:C.10、D【解析】解:椭圆的右焦点为(2,0),所以抛物线的焦点为(2,0),则,故选D11、B【解析】根据的取值分类讨论说明【详解】时方程化为,为直线,时,方程化为,为椭圆,时,方程化为,为双曲线,而,因此曲线不可能是圆故选:B12、C【解析】首先求出等差数列的首先和公差,然后写出数列即可观察到满足的i的取值集合.【详解】设公差为d,由题知,,解得,,所以数列为,故.故选:C.【点睛】本题主要考查了等差数列的基本量的求解,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分别对,分别大于1,等于1,小于1的讨论,即可.【详解】对,分别大于1,等于1,小于1的讨论,当,解得当,不存在,当时,,解得,故x的范围为点睛】本道题考查了分段函数问题,分类讨论,即可,难度中等14、##【解析】利用导数的几何意义根据r的2次近似值的定义求解即可【详解】由,得,取,,所以过点作曲线的切线的斜率为1,所以直线的方程为,其与轴交点的横坐标为1,即,因为,所以过点作曲线的切线的斜率为4,所以直线的方程为,其与轴交点的横坐标为,即,故答案为:15、##30°【解析】过点E作CE∥AB,且使得CE=AB,则四边形ABEC是平行四边形,进而(或其补角)是所求角,算出答案即可.【详解】过点E作CE∥AB,且使得CE=AB,则四边形ABEC是平行四边形,设所求角为,于是.设原正方形ABCD边长为2,取AC的中点O,连接DO,BO,则且,而平面平面,且交于AC,所以平面ABEC,则.易得,,,而则于是,,.在中,,取DE的中点F,则,所以,即,于是.故答案为:.16、(1),;(2)存在定点,为【解析】(1)利用,,求解方程(2)设直线方程为,与椭圆联立利用判别式等于0得,并求得切点坐标及,假设存在点,利用化简求值【详解】(1)由已知得,,,,椭圆的方程为,离心率为;(2)在轴存在定点,为使,证明:设直线方程为代入得,化简得由,得,,设,则,,则,设,则,则假设存在点解得所以在轴存在定点使【点睛】本题考查直线与椭圆的位置关系,考查切线的应用,利用判别式等于0得坐标是解决问题的关键,考查计算能力,是中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由频率之和为1求参数.(2)由分层抽样的比例可得抽取的5人中,和分别为:1人,2人,2人,再应用列举法写出所有基本事件,根据古典概型的概率计算即可.小问1详解】根据频率分布直方图得:,解得;【小问2详解】由于,和的频率之比为:,故抽取的5人中,,和别为:1人,2人,2人,记的1人为,的2人为,,的2人为,,故随机抽取2人共有,,,,,,,,,10种,其中至少有1人每天阅读时间位于的包含,,,,,,共7种,故概率.18、(1),;(2).【解析】(1)利用求出数列的通项,再求出等比数列的公比即得解;(2)求出,再利用错位相减法求解.【小问1详解】解:,.当时,,适合..设等比数列公比为,,,即,或(舍去),.【小问2详解】解:,,,上述两式相减,得,所以所以.19、(1)证明见解析(2)证明见解析【解析】(1)利用已知条件证明为常数即可;(2)求出和通项公式,再求出通项公式,利用裂项相消法可求,判断的单调性即可求其范围.【小问1详解】∵=2,(n≥2,),∴当n≥2时,(常数),∴数列{+1}是公比为3的等比数列;【小问2详解】由(1)知,数列{+1}是以3为首项,以3为公比的等比数列,∴,∴,∴∵,∴∴,∴∴.当n≥2时,∴{}为递增数列,故的最小值为,∴.20、(1);(2)【解析】(1)由焦点坐标可求c值,a值,然后可求出b的值.进而求出椭圆C的标准方程(2)先求出直线方程然后与椭圆方程联立利用韦达定理及弦长公式求出|AB|的长度【详解】解:⑴由,长轴长为6得:所以∴椭圆方程为⑵设,由⑴可知椭圆方程为①,∵直线AB的方程为②把②代入①得化简并整理得所以又【点睛】本题考查椭圆的方程和性质,考查韦达定理及弦长公式的应用,考查运算能力,属于中档题21、(1)证明见解析(2)【解析】(1)根据等腰三角形三线合一的性质得到、,即可得到平面,再根据,即可得证;(2)由面面垂直的性质得到平面,建立如图所示空间直角坐标系,设,即可得到点,,的坐标,最后利用空间向量法求出二面角的余弦值;小问1详解】证明:连接DE因为,且D为AC的中点,所以因为,且D为AC的中点,所以因为平面BDE,平面BDE,且,所以平面因为,所以平面BDE,所以【小问2详解】解:由(1)可知因为平面平面,平面平面,平面,所以平面

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论