




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
天津市滨海新区七所重点中学2023-2024学年数学高二上期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“中国剩余定理”又称“孙子定理”.1852年英国来华传教士伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2021这2020个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列,则此数列的项数为()A. B.C. D.2.“”是“直线与圆相切”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.如果椭圆的弦被点平分,那么这条弦所在的直线的方程是()A. B.C. D.4.已知数列满足,,在()A.25 B.30C.32 D.645.函数的图象大致为()A. B.C. D.6.曲线在点处的切线方程是A. B.C. D.7.已知是定义在上的函数,其导函数为,且,且,则不等式的解集为()A. B.C. D.8.直线与曲线相切于点,则()A. B.C. D.9.第届全运会于年月在陕西西安顺利举办,其中水上项目在西安奥体中心游泳跳水馆进行,为了应对比赛,大会组委会将对泳池进行检修,已知泳池深度为,其容积为,如果池底每平方米的维修费用为元,设入水处的较短池壁长度为,且据估计较短的池壁维修费用与池壁长度成正比,且比例系数为,较长的池壁维修费用满足代数式,则当泳池的维修费用最低时值为()A. B.C. D.10.下列命题中正确的是A.命题“若,则”的否命题为:“若,则”B.若命题,是假命题,则实数C.“”的一个充分不必要条件是“”D.命题“若,则”的逆否命题为真命题11.已知正方体中,分别为棱的中点,则直线与所成角的余弦值为()A. B.C. D.12.是等差数列,且,,则的值()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.“”是“”的________条件.(从“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”中选择一项填空.)14.已知方程的两根为和5,则不等式的解集是______15.圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为________16.已知抛物线的焦点坐标为,则该抛物线上一点到焦点的距离的取值范围是___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列的前项和为,,.(1)求的通项公式;(2)设数列的前项和为,用符号表示不超过x的最大数,当时,求的值.18.(12分)已知抛物线E:y2=8x(1)求抛物线的焦点及准线方程;(2)过点P(-1,1)的直线l1与抛物线E只有一个公共点,求直线l1的方程;(3)过点M(2,3)的直线l2与抛物线E交于点A,B.若弦AB的中点为M,求直线l2的方程19.(12分)已知函数.(1)求函数的极值;(2)是否存在实数,,,对任意的正数,都有成立?若存在,求出,,的所有值;若不存在,请说明理由.20.(12分)在平面直角坐标系xOy中,点A(2,4),直线l:,设圆C的半径为1,圆心在直线l上,圆心也在直线上.(1)求圆C的方程;(2)过点A作圆C的切线,求切线的方程.21.(12分)已知数列满足,,.(1)证明:数列是等比数列,并求其通项公式;(2)若,求数列的前项和.22.(10分)在平面直角坐标系中,已知点,,点满足,记点的轨迹为.(1)求的方程;(2)已知,是经过圆上一点且与相切的两条直线,斜率分别为,,直线的斜率为,求证:为定值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由题设且,应用不等式求的范围,即可确定项数.【详解】由题设,且,所以,可得且.所以此数列的项数为.故选:C2、A【解析】根据题意,结合直线与圆的位置关系求出,即可求解.【详解】根据题意,由直线与圆相切,知圆心到直线的距离,解得或,因此“”是“直线与圆相切”的充分不必要条件.故选:A.3、B【解析】设该弦所在直线与椭圆的两个交点分别为,,则,利用点差法可得答案.【详解】设该弦所在直线与椭圆的两个交点分别为,,则因为,两式相减可得,,即由中点公式可得,所以,即,所以AB所在直线方程为,即故选:B4、A【解析】根据题中条件,得出数列公差,进而可求出结果.【详解】由得,所以数列是以为公差的等差数列,又,所以.故选:A.【点睛】本题主要考查等差数列的基本量运算,属于基础题型.5、A【解析】由题意首先确定函数的奇偶性,然后考查函数在特殊点的函数值排除错误选项即可确定函数的图象.【详解】由函数的解析式可得:,则函数为奇函数,其图象关于坐标原点对称,选项CD错误;当时,,选项B错误.故选:A.【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项6、D【解析】先求导数,得切线的斜率,再根据点斜式得切线方程.【详解】,选D.点睛】本题考查导数几何意义以及直线点斜式方程,考查基本求解能力,属基础题.7、B【解析】令,再结合,和已知条件将问题转化为,最后结合单调性求解即可.【详解】解:令,则,因为,所以,即函数为上的增函数,因为,不等式可化为,所以,故不等式的解集为故选:B8、A【解析】直线与曲线相切于点,可得求得的导数,可得,即可求得答案.【详解】直线与曲线相切于点将代入可得:解得:由,解得:.可得,根据在上,解得:故故选:A.【点睛】本题考查了根据切点求参数问题,解题关键是掌握函数切线的定义和导数的求法,考查了分析能力和计算能力,属于中档题.9、A【解析】根据题意得到泳池维修费用的的解析式,再利用导数求出最值即可【详解】解:设泳池维修的总费用为元,则由题意得,则,令,解得,当时,;当时,,故当时,有最小值因此,当较短池壁为时,泳池的总维修费用最低故选A10、C【解析】.命题的否定是同时否定条件和结论;.将当成真命题解出的范围,再取补集即可;.求出“”的充要条件再判断即可;.判断原命题的真假即可【详解】解:对于A:命题“若,则”的否命题为:“若,则“,故A错误;对于B:当命题,是真命题时,,所以,又因为命题为假命题,所以,故B错误;对于C:由“”解得:,故“”是“”的充分不必要条件,故C正确;对于D:因为命题“若,则”是假命题,所以其逆否命题也是假命题,故D错误;故选:C11、D【解析】以D为原点建立空间直角坐标系,求出E,F,B,D1点的坐标,利用直线夹角的向量求法求解【详解】如图,以D为原点建立空间直角坐标系,设正方体的边长为2,则,,,,,直线与所成角的余弦值为:.故选D【点睛】本题主要考查了空间向量的应用及向量夹角的坐标运算,属于基础题12、B【解析】根据等差数列的性质计算【详解】因为是等差数列,所以,,也成等差数列,所以故选:B二、填空题:本题共4小题,每小题5分,共20分。13、充分不必要【解析】由不等式的性质可知,由得,反之代入进行验证,然后根据充分性与必要性的定义进行判断,即可得出所要的答案【详解】解:由不等式的性质可知,由得,故“”成立可推出“”,而,当,则,所以“”不能保证“”,故“”是“”成立的充分不必要条件.故答案为:充分不必要【点睛】本题考查充分条件与必要条件的判断,结合不等式的性质,属于较简单题型14、【解析】根据根与系数的关系以及一元二次不等式的解法即可解出【详解】由题意可知,,解得,所以即为,解得或,所以不等式的解集是故答案为:15、相交【解析】由题意知,两圆的圆心分别为(-2,0),(2,1),故两圆的圆心距离为,两圆的半径之差为1,半径之和为5,而1<<5,所以两圆的位置关系为相交16、【解析】根据题意,求得,得到焦点坐标,结合抛物线的定义,得到,根据,求得,即可求解.【详解】由抛物线的焦点坐标为,可得,解得,设抛物线上的任意一点为,焦点为,由抛物线的定义可得,因为,所以,所以抛物线上一点到焦点的距离的取值范围是.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)9【解析】(1)首先根据已知条件分别求出的首项和公差,然后利用等差数列的通项公式求解即可;(2)首先利用等差数列求和公式求出,然后利用裂项相消法和分组求和法求出,进而可求出的通项公式,最后利用等差数列求和公式求解即可.【小问1详解】不妨设等差数列的公差为,故,,解得,,从而,即的通项公式为.【小问2详解】由题意可知,,所以,故,因为当时,;当时,,所以,由可知,,即,解得,即值为9.18、(1)焦点为(2,0),准线方程为x=-2;(2)y=1或x-y+2=0或2x+y+1=0;(3)4x-3y+1=0.【解析】(1)根据抛物线的方程及其几何性质,求焦点和准线;(2)分直线l1的斜率为0和不为0两种情况,根据直线与抛物线只有一个公共点,由直线与x轴平行或Δ=0,得解;(3)利用点差法求出直线l2的斜率,即可得直线l2的方程【小问1详解】由题意,p=4,则焦点为(2,0),准线方程为x=-2【小问2详解】当直线l1的斜率为0时,y=1;当直线l1的斜率不为0时,设直线l1为x+1=m(y-1),联立,得y2-8my+8m+8=0,因为直线l1与抛物线E只有一个公共点,所以Δ=64m2-4(8m+8)=0,解得m=1或,所以直线l1的方程为x-y+2=0或2x+y+1=0,综上,直线l1为y=1或x-y+2=0或2x+y+1=0【小问3详解】由题意,直线l2的斜率一定存在,设其斜率为k,A(x1,y1),B(x2,y2),则8x1,8x2,两式作差得:8(x1-x2),即k,所以直线l2为y-3(x-2),即4x-3y+1=019、(1)极小值为:,无极大值(2),,【解析】(1)先求导求单调性,再判断极值点求极值即可;(2)易知,只需要为函数和的公切线即可,求出公切线,代入后分别证明和成立即可.【小问1详解】由题意知:,令,解得,令,解得,所以函数在单调递增,在单调递减,所以为函数的极小值点,即极小值为:,无极大值.【小问2详解】设,易知,所以点是和的公共点,要使成立,只需要为函数和的公切线即可,由(1)知,,所以在点处的切线为:,同理可得在点处的切线为:,由题意知为同一条直线,所以解得,即等价于;下面证明这个式子成立:首先证明等价于,设,所以,恒成立,所以单调递增,易知,所以当时,,当时,,所以在单调递减,在单调递增,所以,故不等式成立,即成立;再证明:等价于,设,所以,所以当时,,当时,,所以在单调递增,在单调递减,所以,故不等式成立,即成立;综上所述,存在,,使得成立.故:,,.【点睛】函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.20、(1)(2)或【解析】(1)直接求出圆心的坐标,写出圆的方程;(2)分斜率存在和斜率不存在进行分类讨论,利用几何法列方程,即可求解.【小问1详解】由圆心C在直线l:上可设:点,又C也在直线上,∴,∴又圆C的半径为1,∴圆C的方程为.【小问2详解】当直线垂直于x轴时,与圆C相切,此时直线方程为.当直线与x轴不垂直时,设过A点的切线方程为,即,则,解得.此时切线方程,.综上所述,所求切线为或21、(1)证明见解析,;(2).【解析】(1)由已知条件,可得为常数,从而得证数列是等比数列,进而可得数列的通项公
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《密铺》(教案)2024-2025学年数学四年级下册
- 二年级上册数学教案-7.12 观察物体-青岛版(五年制)
- 2025年汽车美容员工合同模板
- 2025年学习雷锋精神62周年主题活动方案 (汇编3份)
- 部编版语文四年级下册第二单元 阅读分享课《灰尘的旅行》 表格式公开课一等奖创新教学设计
- 期末检测(二)2022-2023学年语文三年级上册(部编版)
- 《第5课 网上搜索》教学设计教学反思-2023-2024学年小学信息技术人教版三起四年级下册
- 2024年UV无影胶水项目资金筹措计划书代可行性研究报告
- 2025年度夫妻财产共管与家庭责任分担协议
- 2025年度影视演员安全防护与保险赔偿合同
- 直肠癌课件完整版本
- 2024年山东省青岛市普通高中自主招生物理试卷(含解析)
- 胸部影像检查护理常规
- 【Z精密零部件公司企业文化建设问题及优化建议14000字(论文)】
- 2024-2030年红茶行业市场深度调研及发展趋势与投资战略研究报告
- 2024Growatt 15000-25000UE古瑞瓦特光伏逆变器用户手册
- 2024年国家公务员考试专业分类专业目录
- 家庭医生签约知识讲座课件(共22张课件)
- DL∕T 5032-2018 火力发电厂总图运输设计规范
- 国际留学合作框架协议书
- DL-T 297-2023 汽轮发电机合金轴瓦超声检测
评论
0/150
提交评论