浙江省丽水四校 2024届数学高二上期末复习检测试题含解析_第1页
浙江省丽水四校 2024届数学高二上期末复习检测试题含解析_第2页
浙江省丽水四校 2024届数学高二上期末复习检测试题含解析_第3页
浙江省丽水四校 2024届数学高二上期末复习检测试题含解析_第4页
浙江省丽水四校 2024届数学高二上期末复习检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省丽水四校2024届数学高二上期末复习检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,那么的值为()A. B.C. D.2.已知,若,是第二象限角,则=()A. B.5C. D.103.已知向量,,且,则实数等于()A.1 B.2C. D.4.设实数x,y满足约束条件则的最小值()A.5 B.C. D.85.已知数列满足:且,则此数列的前20项的和为()A.621 B.622C.1133 D.11346.已知直线,两个不同的平面,,则下列命题正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则7.已知椭圆上一点到椭圆一个焦点的距离是3,则点到另一个焦点的距离为()A.9 B.7C.5 D.38.命题的否定是()A. B.C. D.9.是椭圆的焦点,点在椭圆上,点到的距离为1,则到的距离为()A.3 B.4C.5 D.610.倾斜角为120°,在x轴上截距为-1的直线方程是()A.x-y+1=0 B.x-y-=0C.x+y-=0 D.x+y+=011.甲、乙两名同学同时从教室出发去体育馆打球(路程相等),甲一半时间步行,一半时间跑步;乙一半路程步行,一半路程跑步.如果两人步行速度、跑步速度均相等,则()A.甲先到体育馆 B.乙先到体育馆C.两人同时到体育馆 D.不确定谁先到体育馆12.已知A(-1,1,2),B(1,0,-1),设D在直线AB上,且,设C(λ,+λ,1+λ),若CD⊥AB,则λ的值为()A. B.-C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知直线与,若,则实数a的值为______14.圆关于y轴对称的圆的标准方程为___________.15.若点为圆上的一个动点,则点到直线距离的最大值为________16.计算:________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(…是自然对数的底数).(1)求的单调区间;(2)求函数的零点的个数.18.(12分)在等差数列中,已知公差,前项和(其中)(1)求;(2)求和:19.(12分)新冠肺炎疫情发生以来,我国某科研机构开展应急科研攻关,研制了一种新型冠状病毒疫苗,并已进入二期临床试验.根据普遍规律,志愿者接种疫苗后体内会产生抗体,人体中检测到抗体,说明有抵御病毒的能力.通过检测,用表示注射疫苗后的天数,表示人体中抗体含量水平(单位:,即:百万国际单位/毫升),现测得某志愿者的相关数据如下表所示:天数123456抗体含量水平510265096195根据以上数据,绘制了散点图.(1)根据散点图判断,与(a,b,c,d均为大于0的实数)哪一个更适宜作为描述y与x关系的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果求出y关于x的回归方程,并预测该志愿者在注射疫苗后的第10天的抗体含量水平值;(3)从这位志愿者前6天的检测数据中随机抽取4天的数据作进一步的分析,记其中的y值大于50的天数为X,求X的分布列与数学期望.参考数据:3.5063.673.4917.509.4912.95519.014023.87其中.参考公式:用最小二乘法求经过点,,,,的线性回归方程的系数公式,;.20.(12分)已知公差不为零的等差数列的前项和为,,,成等比数列且满足________.请在①;②;③,这三个条件中任选一个补充在上面题干中,并回答以下问题.(1)求数列的通项公式;(2)设,求数列的前项和.21.(12分)已知向量,(1)求;(2)求;(3)若(),求的值22.(10分)已知函数为常数,函数.(1)讨论函数的单调性;(2)若函数的图象与直线相切,求实数的值;(3)当时,在上有两个极值点且恒成立,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】直接求导,代入计算即可.【详解】,故.故选:D.2、D【解析】先由诱导公式及同角函数关系得到,再根据诱导公式化简,最后由二倍角公式化简求值即可.【详解】∵,∴,∵是第二象限角,∴,∴故选:D3、C【解析】利用空间向量垂直的坐标表示计算即可得解【详解】因向量,,且,则,解得,所以实数等于.故选:C4、B【解析】做出,满足约束条件的可行域,结合图形可得答案.【详解】做出,满足约束条件可行域如图,化为,平移直线,当直线经过点时有最小值,由得,所以的最小值为.故选:B.5、C【解析】这个数列的奇数项是公差为2的等差数列,偶数项是公比为2的等比数列,只要分开来计算即可.【详解】由于,所以当n为奇数时,是等差数列,即:共10项,和为;,共10项,其和为;∴该数列前20项的和;故选:C.6、C【解析】对于A,可能在内,故可判断A;对于B,可能相交,故可判断B;对于C,根据线面垂直的判定定理,可判定C;对于D,和可能平行,或斜交或在内,故可判断D.【详解】对于A,除了外,还有可能在内,故可判断A错误;对于B,,那么可能相交,故可判断B错误;对于C,根据线面平行的性质定理可知,在内一定存在和平行的直线,那么该直线也垂直于,所以,故判定C正确;对于D,,,则和可能平行,或斜交或在内,故可判D.错误,故选:C.7、A【解析】根据椭圆定义求得即可.【详解】由椭圆定义知,点P到另一个焦点的距离为2×6-3=9.故选:A8、C【解析】根据含全称量词命题的否定可写出结果.【详解】全称命题的否定是特称命题,所以命题的否定是.故选:C9、C【解析】利用椭圆的定义直接求解【详解】由题意得,得,因为,,所以,故选:C10、D【解析】由倾斜角求出斜率,写出斜截式方程,再化为一般式【详解】由于倾斜角为120°,故斜率k=-.又直线过点(-1,0),所以方程为y=-(x+1),即x+y+=0.故选:D.【点睛】本题考查直线方程的斜截式,属于基础题11、A【解析】设出总路程与步行速度、跑步速度,表示出两人所花时间后比较不等式大小【详解】设总路程为,步行速度,跑步速度对于甲:,得对于乙:,当且仅当时等号成立,而,故,乙花时间多,甲先到体育馆故选:A12、B【解析】设D(x,y,z),根据求出D(,,0),再根据CD⊥AB得·=2(-λ)+λ-3(-1-λ)=0,解方程即得λ的值.【详解】设D(x,y,z),则=(x+1,y-1,z-2),=(2,-1,-3),=(1-x,-y,-1-z),∵=2,∴∴∴D(,,0),=(-λ,-λ,-1-λ),∵⊥,∴·=2(-λ)+λ-3(-1-λ)=0,∴λ=-故选:B【点睛】(1)本题主要考查向量的线性运算和空间向量垂直的坐标表示,意在考查学生对这些知识的掌握水平和分析推理能力.(2).二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由可得,从而可求出实数a的值【详解】因为直线与,且,所以,解得,故答案:14、【解析】根据题意可得圆心坐标为,半径为1,利用平面直角坐标系点关于坐标轴对称特征可得所求的圆心坐标为,半径为1,进而得出结果.【详解】由题意知,圆的圆心坐标为,半径为1,设圆关于y轴对称的圆为,所以,半径为1,所以的标准方程为.故答案为:15、7【解析】根据给定条件求出圆C的圆心C到直线l的距离即可计算作答.【详解】圆的圆心,半径,点C到直线的距离,所以圆C上点P到直线l距离的最大值为.故答案为:716、【解析】根据无穷等比数列的求和公式直接即可求出答案.【详解】.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)当时,的单调递增区间为,无单调递减区间;当时,的单调递减区间为,单调递增区间为;(2)时函数没有零点;或时函数有且只有一个零点;时,函数有两个零点.【解析】(1)先对函数求导,然后分和两种情况判断导函数正负,求其单调区间;(2)由,得,构造函数,然后利用导数求出其单调区间和极值,画出此函数的图像,再判断图像与直线的交点情况,从而可得答案【详解】(1)因为,所以,当时,恒成立,所以的单调递增区间为,无单调递减区间;当时,令,得;令,得,所以的单调递减区间为,单调递增区间为.(2)显然0不是函数的零点,由,得.令,则.或时,,时,,所以在和上都是减函数,在上是增函数,时取极小值,又当时,.所以时,关于的方程无解,或时关于的方程只有一个解,时,关于的方程有两个不同解.因此,时函数没有零点,或时函数有且只有一个零点,时,函数有两个零点.【点睛】关键点点睛:此题考查导数的应用,考查利用导数求函数的单调区间,考查利用导数判断函数的零点,解题的关键是由,得,构造函数,然后利用导数求出其单调区间和极值,画出此函数的图像,再判断图像与直线的交点情况,考查数形结合的思想,属于中档题18、(1)12(2)18【解析】(1)根据已知的,利用等差数列的通项公式和前n项和公式即可列式求解;(2)由第(1)问中求解出的的通项公式,要求前12项绝对值的和,可以发现,该数列前6项为正项,后6项为负项,因此在算和的时候,后6项和可以取原通项公式的相反数即可计算,即为,然后再加上前6项和,即为要求的前12项绝对值的和.【小问1详解】由题意可得,在等差数列中,已知公差,前项和所以,解之得,所以n=12【小问2详解】由(1)可知数列{an}的通项公式为,所以即19、(1)(2),4023.87(3)分布列答案见解析,数学期望:【解析】(1)由于这些点分布在一条曲线的附近,从而可选出回归方程,(2)设,,则建立w关于x的回归方程,然后根据公式和表中的数据求解回归方程即可,再将代入回归方程可求得在注射疫苗后的第10天的抗体含量水平值,(3)由题意可知x的可能取值为0,1,2,然后求对应的概率,从而可求出分布列和期望【小问1详解】根据散点图可知这些点分布在一条曲线的附近,所以更适合作为描述y与x关系的回归方程类型.【小问2详解】设,变换后可得,设,建立w关于x的回归方程,,所以所以w关于x的回归方程为,所以,当时,,即该志愿者在注射疫苗后的第10天的抗体含量水平值约为4023.87miu/mL.【小问3详解】由表格数据可知,第5,6天的y值大于50,故x的可能取值为0,1,2,,,,X的分布列为012.20、(1)答案见解析(2)【解析】(1)首先由,,成等比数列,求出,再由①或②或③求出数列的首项和公差,即可求得的通项公式;(2)求得的通项公式,结合裂项相消法求得.【小问1详解】设等差数列的公差为,由,,成等比数列,可得,即,∵,故,选①:由,可得,解得,所以数列的通项公式为选②:由,可得,即,所以,解得,所以;选③:由,可得,即,所以,解得,所以;【小问2详解】由(1)可得,所以.21、(1)(2)(3)【解析】(1)根据向量数量积的坐标表示即可得解;(2)求出,再根据空间向量的模的坐标表示即可得解;(3)由,可得,再根据数量积的运算律即可得解.【小问1详解】解:;【小问2详解】解:;【小问3详解】解:因为,所以,即,解得.22、(1)答案见解析;(2)7;(3)【解析】(1)根据题意求得,讨论,,,时解,即可得出函数的单调区间;(2)设切点为则结合,得令通过求导研究单调性解得进而解出的值.(3)由已知可得解析式,观察有,求导得原题意可转化为函数在上有两个不同零点.结合根分布可得,函数的两个极值点为是在上的两个不同零点可得且,代入函数中令通过单调性求出进而可得答案.【详解】解:(1),令,解得:①当时,由得,由得,在上单调递减,在上单调递增;②当时,由得或由得所以在上单调递减,在上单调递增;③当时,恒成立,所以上单调递增.④当时,由得或由得所以在上单调递减,在上单调递增.综上:①当时,在上单调递减,在上单调递增;②当时,在上单调递减,在上单调递增;③当时,在上单调递增.④当时,在上单调递减,在上单调递增.(2)设切点为则(*),由可得(**),联立(*)(**)可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论