版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省元阳县一中2023年数学高二上期末质量跟踪监视模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知线段AB的端点B在直线l:y=-x+5上,端点A在圆C1:上运动,线段AB的中点M的轨迹为曲线C2,若曲线C2与圆C1有两个公共点,则点B的横坐标的取值范围是()A.(-1,0) B.(1,4)C.(0,6) D.(-1,5)2.已知等比数列的前n项和为,且,则()A.20 B.30C.40 D.503.中国明代商人程大位对文学和数学颇感兴趣,他于60岁时完成杰作《直指算法统宗》.这是一本风行东亚的数学名著,该书A.76石 B.77石C.78石 D.79石4.如图已知正方体,点是对角线上的一点且,,则()A.当时,平面 B.当时,平面C.当为直角三角形时, D.当的面积最小时,5.若平面的一个法向量为,点,,,,到平面的距离为()A.1 B.2C.3 D.46.已知,,,若、、三个向量共面,则实数A3 B.5C.7 D.97.已知直线交圆于A,B两点,若点满足,则直线l被圆C截得线段的长是()A.3 B.2C. D.48.已知双曲线的左、右焦点分别为,,为坐标原点,为双曲线在第一象限上的点,直线,分别交双曲线的左,右支于另一点,,若,且,则双曲线的离心率为()A. B.3C.2 D.9.已知等差数列中,、是的两根,则()A B.C. D.10.已知圆,若存在过点的直线与圆C相交于不同两点A,B,且,则实数a的取值范围是()A. B.C. D.11.已知椭圆的离心率为,直线与椭圆交于两点,为坐标原点,且,则椭圆的方程为A B.C. D.12.已知椭圆:的离心率为,则实数()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.拋物线的焦点坐标为___________.14.设Sn是数列{an}的前n项和,且a1=-1,an+1=SnSn+1,则Sn=__________.15.将集合且中所有的元素从小到大排列得到的数列记为,则___________(填数值).16.已知为直线上的动点,为函数图象上的动点,则的最小值为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)当时,求曲线在点处的切线方程;(2)若对任意的,恒成立,求实数a的取值范围18.(12分)立德中学举行冬令营活动期间,对位参加活动的学生进行了文化和体能测试,满分为150分,其测试成绩都在90分和150分之间,成绩在认定为“一般”,成绩在认定为“良好”,成绩在认定为“优秀”.成绩统计人数如下表:体能文化一般良好优秀一般0良好3优秀2例如,表中体能成绩良好且文化成绩一般的学生有2人(1)若从这位参加测试的学生中随机抽取一位,抽到文化或体能优秀的学生概率为.求,的值;(2)在(1)的情况下,从体能成绩优秀的学生中,随机抽取2人,求至少有一个人文化的成绩为优秀的概率;(3)若让使参加体能测试的成绩方差最小,写出的值.(直接写出答案)19.(12分)曲线与曲线在第一象限的交点为.曲线是()和()组成的封闭图形.曲线与轴的左交点为、右交点为.(1)设曲线与曲线具有相同的一个焦点,求线段的方程;(2)在(1)的条件下,曲线上存在多少个点,使得,请说明理由.(3)设过原点的直线与以为圆心的圆相切,其中圆的半径小于1,切点为.直线与曲线在第一象限的两个交点为..当对任意直线恒成立,求的值.20.(12分)函数.(1)当时,解不等式;(2)若不等式对任意恒成立,求实数a的取值范围.21.(12分)已知抛物线的焦点为F,以F和准线上的两点为顶点的三角形是边长为的等边三角形,过的直线交抛物线E于A,B两点(1)求抛物线E的方程;(2)是否存在常数,使得,如果存在,求的值,如果不存在,请说明理由;(3)证明:内切圆的面积小于22.(10分)已知双曲线的右焦点与抛物线的焦点相同,且过点.(1)求双曲线渐近线方程;(2)求抛物线的标准方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】设,AB的中点,由中点坐标公式求得,代入圆C1:得点点M的轨迹方程,再根据两圆的位置关系建立不等式,代入,求解即可得点B的横坐标的取值范围.【详解】解:设,AB的中点,则,所以,又因为端点A在圆C1:上运动,所以,即,因为曲线C2与圆C1有两个公共点,所以,又因B在直线l:y=-x+5上,所以,所以,整理得,即,解得,所以点B的横坐标的取值范围是,故选:D.2、B【解析】利用等比数列的前n项和公式即可求解.【详解】设等比数列的首项为,公比为,则,由得,即,解得或(舍),且代入①得,则,所以.故选:B.3、C【解析】设出未知数,列出方程组,求出答案.【详解】设甲、乙、丙分得的米数为x+d,x,x-d,则,解得:d=18,,解得:x=60,所以x+d=60+18=78(石)故选:C4、D【解析】建立空间直角坐标系,利用空间向量法一一计算可得;【详解】解:由题可知,如图令正方体的棱长为1,建立空间直角坐标系,则,,,,,,,所以,因为,所以,所以,,,,设平面的法向量为,则,令,则,,所以对于A:若平面,则,则,解得,故A错误;对于B:若平面,则,即,解得,故B错误;当为直角三角形时,有,即,解得或(舍去),故C错误;设到的距离为,则,当的面积最小时,,故正确故选:5、B【解析】求出,点A到平面的距离:,由此能求出结果【详解】解:,,,,∴为平面的一条斜线,且∴点到平面的距离:故选:B.6、A【解析】由空间向量共面原理得存在实数,,使得,由此能求出实数【详解】解:,,,、、三个向量共面,存在实数,,使得,即有:,解得,,实数故选:【点睛】本题考查空间向量共面原理的应用,属于基础题7、B【解析】由题设知为圆的圆心且A、B在圆上,根据已知及向量数量积的定义求的大小,进而判断△的形状,即可得直线l被圆C截得线段的长.【详解】∵点为圆的圆心且A、B在圆上,又,∴,∴,又,∴,故△为等边三角形,∴直线l被圆C截得线段的长是2故选:B8、D【解析】由双曲线的定义可设,,由平面几何知识可得四边形为平行四边形,三角形,用余弦定理,可得,的方程,再由离心率公式可得所求值【详解】由双曲线的定义可得,由,可得,,结合双曲线性质可以得到,而,结合四边形对角线平分,可得四边形为平行四边形,结合,故,对三角形,用余弦定理,得到,结合,可得,,,代入上式子中,得到,即,结合离心率满足,即可得出,故选:D【点睛】本题考查求双曲线的离心率,熟记双曲线的简单性质即可,属于常考题型.9、B【解析】利用韦达定理结合等差中项的性质可求得的值,再结合等差中项的性质可求得结果.【详解】对于方程,,由韦达定理可得,故,则,所以,.故选:B.10、D【解析】根据圆的割线定理,结合圆的性质进行求解即可.【详解】圆的圆心坐标为:,半径,由圆的割线定理可知:,显然有,或,因为,所以,于是有,因为,所以,而,或,所以,故选:D11、D【解析】根据等腰直角三角形的性质可得,将代入椭圆方程,结合离心率为以及性质列方程组求得与的值,从而可得结果.【详解】设直线与椭圆在第一象限的交点为,因为,所以,即,由可得,,故所求椭圆的方程为.故选D.【点睛】本题主要考查椭圆的标准方程与性质,以及椭圆离心率的应用,意在考查对基础知识掌握的熟练程度,属于中档题.12、C【解析】根据题意,先求得的值,代入离心率公式,即可得答案.【详解】因为,所以所以,解得.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】化成抛物线的标准方程即可.【详解】由题意知,,则焦点坐标为.故答案为:14、-.【解析】因为,所以,所以,即,又,即,所以数列是首项和公差都为的等差数列,所以,所以考点:数列的递推关系式及等差数列的通项公式【方法点晴】本题主要考查了数列的通项公式、数列的递推关系式的应用、等差数列的通项公式及其性质定知识点的综合应用,解答中得到,,确定数列是首项和公差都为的等差数列是解答的关键,着重考查了学生灵活变形能力和推理与论证能力,平时应注意方法的积累与总结,属于中档试题15、992【解析】列举数列的前几项,观察特征,可得出.详解】由题意得观察规律可得中,以为被减数的项共有个,因为,所以是中的第5项,所以.故答案为:992.16、【解析】求得的导数,由题意可得与直线平行的直线和曲线相切,然后求出的值最小,设出切点,求出切线方程,再由两直线平行的距离公式,得到的最小值【详解】解:函数的导数为,设与直线平行的直线与曲线相切,设切点为,则,所以,所以,所以,所以,所以切线方程为,可得的最小值为,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)先求导,由到数值求出斜率,最后根据点斜式求出方程即可;(2)采用分离常数法,转化为求新函数的值域即可.【小问1详解】时,,,则,,所以在点处的切线方程为,即【小问2详解】对任意的,恒成立,即,对任意的,令,即,则,因为,,所以当时,,在区间上单调递减,当时,,在区间上单调递增,则,所以18、(1),;(2);(3).【解析】(1)由题设可得求参数a,结合表格数据及已知总学生人数求参数b.(2)应用列举法求古典概型的概率.(3)应用表格数据及方差公式可得且,即可确定成绩方差最小对应的值.【小问1详解】设事件:从位学生中随机抽取一位,抽到文化或体能优秀的学生由题意知,体能或文化优秀的学生共有人,则,解得所以;【小问2详解】体能成绩为优秀的学生共有5人,在这5人中,文化成绩一般的人记为;文化成绩良好的人记为;文化成绩优秀的人记为从文化成绩优秀的学生中,随机抽取2人的样本空间,设事件:至少有一个人文化的成绩为优秀,,所以,体能成绩优秀的学生中,随机抽取2人,至少有一个人文化成绩为优秀的概率是;【小问3详解】由题设知:体能测试成绩,{一般,良好,优秀}人数分别为{5,,},对应平均分为{100,120,140},所以体能测试平均成绩,所以,而所以当时最小.19、(1)或;(2)一共2个,理由见解析;(3)答案见解析.【解析】(1)先求曲线的焦点,再求点的坐标,分焦点为左焦点或右焦点,求线段的方程;(2)分点在双曲线或是椭圆的曲线上,结合条件,说明点的个数;(3)首先设出直线和圆的方程,利用直线与圆相切,以及直线与曲线相交,分别表示,并计算得到的值.【详解】(1)两个曲线相同的焦点,,解得:,即双曲线方程是,椭圆方程是,焦点坐标是,联立两个曲线,得,,即,当焦点是右焦点时,线段的方程当焦点时左焦点时,,,线段的方程(2),假设点在曲线上单调递增∴所以点不可能在曲线上所以点只可能在曲线上,根据得可以得到当左焦点,,同样这样的使得不存在所以这样的点一共2个(3)设直线方程,圆方程为直线与圆相切,所以,,根据得到补充说明:由于直线的曲线有两个交点,受参数的影响,蕴含着如下关系,∵,当,存在,否则不存在这里可以不需讨论,因为题目前假定直线与曲线有两个交点的大前提,当共焦点时存在不存在.【点睛】关键点点睛:本题考查直线与椭圆和双曲线相交的综合应用,本题的关键是曲线由椭圆和双曲线构成,所以研究曲线上的点时,需分两种情况研究问题.20、(1);(2).【解析】(1)由题设,原不等式等价于,分类讨论即可得出结论;(2)不等式对任意恒成立,即,即可求实数a的取值范围.【详解】(1)当时,原不等式等价于,当时,,解得,即;当时,恒成立,即;当时,,解得,即;综上,不等式的解集为;(2),,即或,解得,∴a取值范围是.21、(1);(2)存在,1;(3)证明见解析.【解析】(1)根据几何关系即可求p;(2)求解为定值1,即可求λ=1;(3)先求的面积,再由(为三角周长)可求内切圆半径r.【小问1详解】由题意焦点到准线的距离等于该正三
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 焙烤食品市场营销策略分析考核试卷
- 建筑装饰与室内设计的造型设计考核试卷
- 信息系统人力资源管理模型与理论考核试卷
- DB11T 758-2010 中小河道综合治理规划导则
- DB11∕T 1825-2021 森林消防综合应急救援基础能力建设规范
- 物业管理员工培训方案及计划
- 区分里外课件教学课件
- 淮阴工学院《理论力学》2021-2022学年第一学期期末试卷
- 淮阴工学院《化工设备机械基础》2022-2023学年第一学期期末试卷
- 收费的生产服务相关行业投资方案
- DB32∕T 1712-2011 水利工程铸铁闸门设计制造安装验收规范
- 校服评标方法及打分表
- (完整版)心理健康教育五年工作规划
- 四川省工程建设统一用表(新版监理单位用表)
- 作业流程分析ppt课件
- 佛山岭南新天地商业调研
- 如何做好机关办公楼物业管理工作
- 疝环充填式无张力修补的手术要点
- 完整版中建八局施工分包与劳务用工管理办法
- 印刷机操作规程
- 苏教版二年级上册7的乘法口诀课件(经典实用)
评论
0/150
提交评论