版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省双江县第一中学2023年高二数学第一学期期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在平行六面体中,底面是边长为的正方形,若,且,则的长为()A. B.C. D.2.已知椭圆的左,右两个焦点分别为,若椭圆C上存在一点A,满足,则椭圆C的离心率的取值范围是()A. B.C. D.3.正三棱锥的侧面都是直角三角形,,分别是,的中点,则与平面所成角的余弦值为()A. B.C. D.4.已知函数的定义域为,若,则()A. B.C. D.5.已知集合,则()A. B.C. D.6.已知奇函数,则的解集为()A. B.C. D.7.如图是一个程序框图,执行该程序框图,则输出的n值是()A.2 B.3C.4 D.58.设P是抛物线上的一个动点,F为抛物线的焦点.若,则的最小值为()A. B.C.4 D.59.已知定义在上的函数满足:,且,则的解集为()A. B.C. D.10.下列通项公式中,对应数列是递增数列的是()A B.C. D.11.已知为偶函数,且当时,,其中为的导数,则不等式的解集为()A. B.C. D.12.过原点O作两条相互垂直的直线分别与椭圆交于A、C与B、D,则四边形ABCD面积最小值为()A B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.有一道楼梯共10阶,小王同学要登上这道楼梯,登楼梯时每步随机选择一步一阶或一步两阶,小王同学7步登完楼梯的概率为___________.14.已知椭圆的左、右焦点分别为,,P为椭圆上一点,满足(O为坐标原点).若,则椭圆的离心率为______15.过圆内的点作一条直线,使它被该圆截得的线段最长,则直线的方程是______16.若“”是真命题,则实数的最小值为_____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,动点到点的距离等于点到直线的距离.(1)求动点的轨迹方程;(2)记动点的轨迹为曲线,过点的直线与曲线交于两点,在轴上是否存在一点,使若存在,求出点的坐标;若不存在,请说明理由.18.(12分)如图,已知正方体的棱长为2,,,分别为,,的中点(1)求直线与直线所成角余弦值;(2)求点到平面的距离19.(12分)如图,从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:(1)[79.5,89.5)这一组的频数、频率分别是多少?(2)估计这次环保知识竞赛的众数、中位数、平均数是多少?20.(12分)已知椭圆过点,且离心率(1)求椭圆的方程;(2)设点为椭圆的左焦点,点,过点作的垂线交椭圆于点,,连接与交于点①若,求;②求的值21.(12分)如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,E,F分别为棱BC,CD的中点(1)求证:D1F平面A1EC1;(2)求直线AC1与平面A1EC1所成角的正弦值.22.(10分)已知等差数列的前和为,数列是公比为2的等比数列,且,(1)求数列和数列的通项公式;(2)现由数列与按照下列方式构造成新的数列①将数列中的项去掉数列中的项,按原来的顺序构成新数列;②数列与中的所有项分别构成集合与,将集合中的所有元素从小到大依次排列构成一个新数列;在以上两个条件中任选一个做为已知条件,求数列的前30项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由向量线性运算得,利用数量积的定义和运算律可求得,由此可求得.【详解】由题意得:,,且,又,,,,.故选:D.2、C【解析】根据题意可知当A为椭圆的上下顶点时,即可满足椭圆C上存在一点A,使得,由此可得,解此不等式可得答案.【详解】由椭圆的对称性可知,当A为椭圆的上下顶点时,最大,故只需即可满足题意,设O为坐标原点,则只需,即有,所以,解得,故选:C3、C【解析】以P为原点,PA为x轴,PB为y轴,PC为z轴,建立空间直角坐标系,利用向量法能求出PB与平面PEF所成角的正弦值.【详解】∵正三棱锥的侧面都是直角三角形,E,F分别是AB,BC的中点,∴以P为原点,PA为x轴,PB为y轴,PC为z轴,建立空间直角坐标系,设,则,,,,,,,,设平面PEF的法向量,则,取,得,设PB与平面PEF所成角为,则,∴PB与平面PEF所成角的正弦值为.故选:C.4、D【解析】利用导数的定义可求得的值.【详解】由导数的定义可得.故选:D.5、C【解析】解一元二次不等式求集合A,再由集合的交运算求即可.【详解】由题设,,∴.故选:C.6、A【解析】先由求出的值,进而可得的解析式,对求导,利用基本不等式可判断恒成立,可判断的单调性,根据单调性脱掉,再解不等式即可.【详解】的定义域为,因为是奇函数,所以,可得:,所以,经检验是奇函数,符合题意,所以,因为,所以,当且仅当即时等号成立,所以在上单调递增,由可得,即,解得:或,所以的解集为,故选:A.7、B【解析】程序框图中的循环结构,一般需重复计算,根据判断框中的条件,确定何时终止循环,输出结果.【详解】初始值:,当时,,进入循环;当时,,进入循环;当时,,终止循环,输出的值为3.故选:B8、C【解析】作出图形,过点作抛物线准线的垂线,由抛物线的定义得,从而得出,再由、、三点共线时,取最小值得解.【详解】,所以在抛物线的内部,过点作抛物线准线的垂线,由抛物线的定义得,,当且仅当、、三点共线时,等号成立,因此,的最小值为.故选:C.9、A【解析】令,利用导数可判断其单调性,从而可解不等式.【详解】设,则,故为上的增函数,而可化为即,故即,所以不等式的解集为,故选:A.10、C【解析】根据数列单调性的定义逐项判断即可.【详解】对于A,B选项对应数列是递减数列.对于C选项,,故数列是递增数列.对于D选项,由于.所以数列不是递增数列故选:C.11、A【解析】根据已知不等式和要求解的不等式特征,构造函数,将问题转化为解不等式.通过已知条件研究g(x)的奇偶性和单调性即可解该不等式.【详解】令,则根据题意可知,,∴g(x)是奇函数,∵,∴当时,,单调递减,∵g(x)是奇函数,g(0)=0,∴g(x)在R上单调递减,由不等式得,.故选:A.12、A【解析】直线AC、BD与坐标轴重合时求出四边形面积,与坐标轴不重合求出四边形ABCD面积最小值,再比较大小即可作答.【详解】因四边形ABCD的两条对角线互相垂直,由椭圆性质知,四边形ABCD的四个顶点为椭圆顶点时,而,四边形ABCD的面积,当直线AC斜率存在且不0时,设其方程为,由消去y得:,设,则,,直线BD方程为,同理得:,则有,当且仅当,即或时取“=”,而,所以四边形ABCD面积最小值为.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题意可分为步、步、步、步、步、步共6种情况,分别求出每种的基本事件数,再利用古典概型的概率公式计算可得;【详解】解:由题意可分为步、步、步、步、步、步共6种情况,①步:即步两阶,有种;②步:即步两阶与步一阶,有种;③步:即步两阶与步一阶,有种;④步:即步两阶与步一阶,有种;⑤步:即步两阶与步一阶,有种;⑥步:即步一阶,有种;综上可得一共有种情况,满足7步登完楼梯的有种;故7步登完楼梯的概率为故答案为:14、##【解析】由可得,再结合椭圆的性质可得为直角三角形,由题意设,则,由勾股定理可得,再结合椭圆的定义可求出离心率【详解】因为,所以,所以,因为,所以,所以为直角三角形,即,所以设,则,所以,得,因为则,所以,所以,即离心率为,故答案为:15、【解析】当直线l过圆心时满足题意,进而求出答案.【详解】圆的标准方程为:,圆心,当l过圆心时满足题意,,所以l的方程为:.故答案为:.16、1【解析】若“”是真命题,则大于或等于函数在的最大值因为函数在上为增函数,所以,函数在上的最大值为1,所以,,即实数的最小值为1.所以答案应填:1.考点:1、命题;2、正切函数的性质.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)存在,.【解析】(1)利用抛物线的定义即求;(2)由题可设直线的方程为,利用韦达定理法结合条件可得,即得.【小问1详解】因为动点到点的距离等于点到直线的距离,所以动点到点的距离和它到直线的距离相等,所以点的轨迹是以为焦点,以直线为准线的抛物线,设抛物线方程为,由,得,所以动点的轨迹方程为.【小问2详解】由题意可知,直线的斜率不为0,故设直线的方程为,.联立,得,恒成立,由韦达定理,得,,假设存在一点,满足题意,则直线的斜率与直线的斜率满足,即,所以,所以解得,所以存在一点,满足,点的坐标为.18、(1)(2)【解析】(1)建立空间直角坐标系,利用向量法由求解;(1)建立空间直角坐标系,先取得平面的一个法向量,,,然后由求解【小问1详解】解:以为原点,为轴,为轴,为轴,建立空间直角坐标系.则,0,,,2,,,2,,,0,,,0,,,0,,,2,,所以,2,,,2,,则直线与直线所成角的余弦值为;【小问2详解】,2,,,2,,设平面的一个法向量,,,则,取,得,1,,又,点到平面的距离19、(1)0.25,15;(2)众数为74.5,中位数为72.8,平均分为70.5.【解析】(1)直接利用频率和频数公式求解;(2)利用频率分布直方图的公式求众数、中位数、平均数.【详解】(1)频率=(89.5-79.5)×0.025=0.25;频数=60×0.25=15.(2)[69.5,79.5)一组的频率最大,人数最多,则众数为74.5,左边三个矩形的面积和为0.4,左边四个矩形的面积和为0.7,所以中位数在第4个矩形中,设中位数为,所以中位数为72.8.平均分为44.5×0.1+54.5×0.15+64.5×0.15+74.5×0.3+84.5×0.25+94.5×0.05=70.520、(1)(2)①,②【解析】(1)由题意得解方程组求出,从而可得椭圆的方程,(2)①由题意可得的方程为,再与椭圆方程联立,解方程组求出的坐标,从而可求出;②当时,,当时,直线方程为,与椭圆方程联立,消去,利用根与系数的关系,结合中点坐标公式可得中点的坐标,再将直线的方程与方程联立,求出点的坐标,从而可求出的值【小问1详解】由题意得解得,所以椭圆的方程为.【小问2详解】①当时,直线的斜率,则的垂线的方程为由得解得故,,②由,,显然斜率存在,,当时,当时,直线过点且与直线垂直,则直线方程为由得显然设,,则,则中点直线的方程为,由得所以综上的值为21、(1)证明见解析;(2).【解析】(1)建立空间直角坐标系,利用向量法证得平面.(2)利用向量法求得直线与平面所成角的正弦值.【详解】(1)建立如图所示空间直角坐标系.,,设平面的法向量为,则,故可设.由于,所以平面.(2)直线与平面所成角为,则.22、(1),(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 三年级语文上册《一次成功的实验》教案
- 中国休闲零食电商行业市场全景调研及投资规划建议报告
- 小班语言公开课《圆》活动教案
- 大学生自我介绍范文集合七篇
- 银行客服工作总结(15篇)
- 建筑实习报告模板合集七篇
- 乒乓球比赛作文300字汇编十篇
- 消防安全在我心中演讲稿5篇
- 后备干部培训心得体会800字
- 辞职报告范文汇编15篇
- 孵化器的运营和服务模式
- 2024年大学试题(管理类)-公共部门决策的理论与方法笔试历年真题荟萃含答案
- 在美术课堂中融入心理健康教育
- 2024年上海外服招聘笔试参考题库附带答案详解
- 中国AED布局与投放专家共识护理课件
- 无菌注射剂生产线清洁验证方案
- 2024年健康照护师理论试题
- 2023年线路维护主管年度总结及下一年展望
- 2023年意识形态工作责任清单及风险点台账
- 《经典动画赏析》课件
- 大学英语四级阅读理解精读100篇
评论
0/150
提交评论