




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版数学八年级下册数学期末试卷专题练习(解析版)一、选择题1.已知是整数,则正整数n的最小值是()A.2 B.4 C.6 D.82.以下列各组数为边长,不能构成直角三角形的是()A.1,2,3 B.5,12,13 C.3,4,5 D.1,2,3.下面条件中,能判定四边形是平行四边形的条件是()A.一组对角相等 B.对角线互相平分 C.一组对边相等 D.对角线互相垂直4.某班3位同学进行投篮比赛,每人投10次,平均每人投中8次,已知第一、三位同学分别投中8次,10次,那么第二位同学投中()A.6次 B.7次 C.8次 D.9次5.如图,已知正方形B的面积为100,如果正方形C的面积为169,那么正方形A的面积为()A.269 B.69 C.169 D.256.如图,在中,,,平分线与的垂直平分线交于点,将沿(在上,在上)折叠,点与点O恰好重合,有如下五个结论:①;②;③是等边三角形;④;⑤.则上列说法中正确的个数是()A.2 B.3 C.4 D.57.如图所示,,则数轴上点表示的数为()A.3 B.5 C. D.8.A,B两地相距20,甲乙两人沿同一条路线从地到地,如图反映的是二人行进路程()与行进时间()之间的关系,有下列说法:①甲始终是匀速行进,乙的行进不是匀速的;②乙用了4个小时到达目的地;③乙比甲先出发1小时;④甲在出发4小时后被乙追上,在这些说法中,正确的有()A.1个 B.2个 C.3个 D.4个二、填空题9.若代数式有意义,则的取值范围__________.10.已知菱形ABCD的对角线AC,BD的长分别为6和8,则该菱形面积是_______.11.如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,BC=12cm,AC=9cm,那么BD的长是_____.12.如图,矩形ABCD被两条对角线分成四个小三角形,如果四个小三角形的周长的和是40厘米,矩形的周长是22厘米,则对角线AC的长为___厘米.13.若正比例函数的图像经过点,则的值为________.14.如图,已知矩形ABCD中(AD>AB),EF经过对角线的交点O,且分别交AD,BC于E,F,请你添加一个条件:______,使四边形EBFD是菱形.15.如图,在平面直角坐标系中,点,都在轴正半轴上,点,都在直线上,,,都是等边三角形,且,则点的横坐标是_______.16.若,则分式的值为__________.三、解答题17.计算:(1);(2).18.去年某省将地处,两地的两所大学合并成了一所综合性大学,为了方便,两地师生的交往,学校准备在相距的,两地之间修筑一条笔直公路(即图中的线段),经测量,在地的北偏东60度方向、地的西偏北45度方向处有一个半径为的公园,问计划修筑的这条公路会不会穿过公园?为什么?(参考数据)19.如图所示,在的方格纸中,每个小正方形的边长均为1,线段的端点、均在小正方形的顶点上.(1)在图中画出以为边的菱形,菱形的面积为8;(2)在图中画出腰长为5的等腰三角形,且点在小正方形顶点上;(3)连接,请直接写出线段的长.20.如图,在矩形ABCD中,点E在边BC上,点F在BC的延长线上,且BE=CF.求证:(1)△ABE≌DCF;(2)四边形AEFD是平行四边形;探究:连结DE,若DE平分∠AEC,直接写出此时四边形AEFD的形状.21.观察下列等式:①;②;③;……回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++……+22.福州地铁一号线实行里程分段计价票制,具体如下:起步价为5公里(含)2元;超过5公里后,5公里~15公里(含),按每5公里加收1元计价(不足5公里按5公里计价);15公里﹣29公里(含),按每7公里加收1元计价(不足7公里按7公里计价);29公里以上,按每9公里加收1元计价(不足9公里按9公里计价).(1)已知福州火车站到南门兜站地铁路程约为6公里,从福州火车站到南门兜站的地铁票价为多少元?(2)设地铁路线长为x公里,票价为y元,请直接写出当y=5时x的取值范围,并画出当5<x≤15时y关于x的函数的图象,23.已知:如图,平行四边形ABCD中,AB=5,BD=8,点E、F分别在边BC、CD上(点E、F与平行四边形ABCD的顶点不重合),CE=CF,AE=AF.(1)求证:四边形ABCD是菱形;(2)设BE=x,AF=y,求y关于x的函数解析式,并写出定义域;(3)如果AE=5,点P在直线AF上,△ABP是以AB为腰的等腰三角形,那么△ABP的底边长为.(请将答案直接填写在空格内)24.如图,一次函数与坐标轴交于两点,将线段以点为中心逆时针旋转一定角度,点的对应点落在第二象限的点处,且的面积为.(1)求点的坐标及直线的表达式;(2)点在直线上第二象限内一点,在中有一个内角是,求点的坐标;(3)过原点的直线,与直线交于点,与直线交于点,在三点中,当其中一点是另外两点所连线段的中点时,求的面积.25.如图,在正方形中,点、是正方形内两点,,,为探索这个图形的特殊性质,某数学兴趣小组经历了如下过程:(1)在图1中,连接,且①求证:与互相平分;②求证:;(2)在图2中,当,其它条件不变时,是否成立?若成立,请证明:若不成立,请说明理由.(3)在图3中,当,,时,求之长.26.如图1,在矩形ABCD中,AB=a,BC=6,动点P从B出发沿射线BC方向移动,作△PAB关于直线PA的对称△PAB′.(1)如图2,当点P在线段BC上运动时,直线PB′与CD相交于点M,连接AM,若∠PAM=45°,请直接写出∠B′AM和∠DAM的数量关系;(2)在(1)的条件下,请求出此时a的值:(3)当a=8时,①如图3,当点B′落在AC上时,请求出此时PB的长;②当点P在BC的延长线上时,请直接写出△PCB′是直角三角形时PB的长度.【参考答案】一、选择题1.C解析:C【分析】因为是整数,且,则6n是完全平方数,满足条件的最小正整数n为6.【详解】解:,且是整数,∴是整数,即6n是完全平方数;∴n的最小正整数值为6.故选:C.【点睛】本题主要考查了二次根式的定义,关键是根据乘除法则和二次根式有意义的条件,二次根式有意义的条件时被开方数是非负数进行解答2.A解析:A【分析】分别求出各选项中较小两数的平方和及最大数的平方,比较后即可得出结论.【详解】解:、由于,不能作为直角三角形的三边长,符合题意;、由于,能作为直角三角形的三边长,不符合题意;、由于,能作为直角三角形的三边长,不符合题意;、由于,能作为直角三角形的三边长,不符合题意.故选:A.【点睛】本题考查了勾股定理的逆定理,解题的关键是牢记“如果三角形的三边长,,满足,那么这个三角形就是直角三角形”.3.B解析:B【解析】【分析】根据平行四边形判定定理判断即可.【详解】∵一组对角相等的四边形不是平行四边形,∴A错误;∵对角线互相平分的四边形是平行四边形,∴B正确;∵一组对边相等的四边形不是平行四边形,∴C错误;∵对角线互相垂直的四边形不是平行四边形,∴D错误;故选B.【点睛】本题考查了平行四边形的判定定理,熟练掌握平行四边形的判定定理是解题的关键.4.A解析:A【解析】【分析】设第二位同学投中x次,根据算术平均数的计算公式列方程即可得到结论.【详解】解:设第二位同学投中x次,∵平均每人投中8次,∴=8,解得:x=6,∴第二位同学投中6次,故选:A.【点睛】本题考查了算术平均数,根据题意列方程是解题的关键.5.B解析:B【解析】根据题意知正方形的B面积为100,正方形C的面积为169,则字母A所代表的正方形的面积=169−100=69.故选B.6.B解析:B【解析】【分析】利用三线合一可判断①;由折叠的性质可判断④;根据垂直平分线的性质得到OA=OB,从而计算出∠ACB=∠EOF=63°,可判断③;证明△OAB≌△OAC,得到OA=OB=OC,从而推出∠OEF=54°,可判断⑤;而题中条件无法得出OD=OE,可判断②.【详解】解:如图,连接OB,OC,∵AB=AC,OA平分∠BAC,∠BAC=54°,∴AO⊥BC(三线合一),故①正确;∠BAO=∠CAO=∠BAC=×54°=27°,∠ABC=∠ACB=×(180°-∠BAC)=×126°=63°,∵DO是AB的垂直平分线,∴OA=OB,即∠OAB=∠OBA=27°,则∠OBC=∠ABC-∠OBA=63°-27°=36°≠∠OBA,由折叠可知:△OEF≌△CEF,故④正确;即∠ACB=∠EOF=63°≠60°,OE=CE,∠OEF=∠CEF,∴△OEF不是等边三角形,故③错误;在△OAB和△OAC中,,∴△OAB≌△OAC(SAS),∴OB=OC,又OB=OA,∴OA=OB=OC,∠OCB=∠OBC=36°,又OE=CE,∴∠OCB=∠EOC=36°,∴∠OEC=180°-(∠OCB+∠EOC)=180°-72°=108°,又∠OEC=∠OEF+∠CEF∠OEF=108°÷2=54°,故⑤正确;而题中条件无法得出OD=OE,故②错误;∴正确的结论为①④⑤共3个,故选B.【点睛】本题考查了折叠的性质,线段垂直平分线的性质,等腰三角形三线合一的性质,等边对等角的性质,以及全等三角形的判定和性质,综合性较强,难度较大,作辅助线,构造出等腰三角形是解题的关键.7.C解析:C【解析】【分析】根据题意得,在中,利用勾股定理可得,从而得到,即可求解.【详解】解:如图,由题意知:,,,..在中,,..∴数轴上点表示的数为.故选:C.【点睛】本题主要考查了勾股定理,数轴与实数,尺规作图——作一条线段等于已知线段,熟练掌握相关知识点是解题的关键.8.A解析:A【分析】根据题意结合图象依次判断即可.【详解】①甲始终是匀速行进,乙的行进不是匀速的,正确;②乙用了4个小时到达目的地,错误;③乙比甲先出发1小时,错误;④甲在出发4小时后被乙追上,错误,故选:A.【点睛】此题考查一次函数图象,正确理解题意,会看函数图象,将两者结合是解题的关键.二、填空题9.【解析】【分析】由代数式有意义可得且从而可得答案.【详解】解:代数式有意义,且且所以:>故答案为:>【点睛】本题考查的是二次根式有意义的条件,分式有意义的条件,利用二次根式与分式有意义列不等式组是解题的关键.10.24【解析】【详解】解:根据菱形的面积等于菱形两条对角线乘积的一半可得菱形面积为故答案为:24.11.D解析:cm【解析】【分析】作DE⊥AB于E,根据勾股定理求出AB,证明△ACD≌△AED,根据全等三角形的性质得到CD=ED,AE=AC=9,根据角平分线的性质、勾股定理列式计算即可.【详解】解:作DE⊥AB于E,由勾股定理得,AB===15,在△ACD和△AED中,,∴△ACD≌△AED(AAS)∴CD=ED,AE=AC=9,∴BE=AB﹣AE=6,在Rt△BED中,BD2=DE2+BE2,即BD2=(12﹣BD)2+62,解得,BD=,故答案为:cm.【点睛】此题考查的是勾股定理和全等三角形的判定及性质,掌握利用勾股定理解直角三角形和全等三角形的判定及性质是解决此题的关键.12.A解析:5【分析】根据矩形性质得出OA=OB=OC=OD,AB=CD,AD=BC,求出8OA+2AB+2BC=40厘米和2AB+2BC=22厘米,求出OA,即可求出答案.【详解】解:∵四边形ABCD是矩形,∴AB=CD,AD=BC,AC=BD,AO=OC,OD=OB,∴AO=OC=OD=OB,∵矩形ABCD被两条对角线分成四个小三角形的周长的和是40厘米,∴OA+OD+AD+OD+OC+CD+OC+OB+BC+OA+OB+AB=40厘米,即8OA+2AB+2BC=40厘米,∵矩形ABCD的周长是22厘米,∴2AB+2BC=22厘米,∴8OA=18厘米,∴OA=2.25厘米,即AC=BD=2OA=4.5厘米.故答案为:4.5.【点睛】本题考查了矩形的性质的应用,注意:矩形的对边相等,矩形的对角线互相平分且相等.13.-4【分析】把代入,即可求解.【详解】解:∵正比例函数的图像经过点,∴,即:k=-4,故答案是:-4.【点睛】本题主要考查正比例函数,掌握待定系数法,是解题的关键.14.E解析:EF⊥BD【分析】通过证明△OBF≌△ODE,可证四边形EBFD是平行四边形,若四边形EBFD是菱形,则对角线互相垂直,因而可添加条件:EF⊥BD.【详解】当EF⊥BD时,四边形EBFD是菱形.理由:∵四边形ABCD是矩形,∴AD∥BC,OB=OD,∴∠FBO=∠EDO,在△OBF和△ODE中,∴△OBF≌△ODE(ASA),∴OE=OF,∴四边形EBFD是平行四边形,∵EF⊥BD,∴四边形EBFD是菱形.故答案为:EF⊥BD.【点睛】本题考查了矩形的性质,平行四边形的判定,菱形的判定,以及全等三角形的判定方法,熟练掌握性质及判定方法是解答本题的关键.15.【分析】设△的边长为,根据直线的解析式得出,再结合等边三角形的性质及外角的性质即可得出,,从而得出,由点的坐标为,得到,,,,,,即可解决问题.【详解】解:过作轴于,过作轴于,过作轴于,如图解析:【分析】设△的边长为,根据直线的解析式得出,再结合等边三角形的性质及外角的性质即可得出,,从而得出,由点的坐标为,得到,,,,,,即可解决问题.【详解】解:过作轴于,过作轴于,过作轴于,如图所示:设△的边长为,则,,,,,,,,,点,,,是直线上的第一象限内的点,,,又△为等边三角形,,,,,,点的坐标为,,,,,,,,点的横坐标为,故答案为:.【点睛】本题考查了一次函数的性质、等边三角形的性质、规律型、以及三角形外角的性质等,解题的关键是找出规律.16.1【分析】首先将已知变形进而得出x+y=2xy,再代入原式求出答案.【详解】∵∴x+y=2xy∴====1故答案为:1.【点睛】此题主要考查了分式的值,正确将已知变形进而化简是解题解析:1【分析】首先将已知变形进而得出x+y=2xy,再代入原式求出答案.【详解】∵∴x+y=2xy∴====1故答案为:1.【点睛】此题主要考查了分式的值,正确将已知变形进而化简是解题关键.三、解答题17.(1);(2).【分析】(1)根据二次根式的混合运算的法则计算即可;(2)利用平方差公式和完全平方公式展开,再合并即可.【详解】解:(1);(2).【点睛】本题考查了二次根式解析:(1);(2).【分析】(1)根据二次根式的混合运算的法则计算即可;(2)利用平方差公式和完全平方公式展开,再合并即可.【详解】解:(1);(2).【点睛】本题考查了二次根式的混合运算,熟练掌握运算法则是解题的关键.18.计划修筑的这条公路不会穿过公园.理由见解析【分析】先过点C作CD⊥AB于D,设CD为xkm,则BD为xkm,AD为xkm,则有x+x=2,求出x的值,再与0.7比较大小,即可得出答案.【详解】解析:计划修筑的这条公路不会穿过公园.理由见解析【分析】先过点C作CD⊥AB于D,设CD为xkm,则BD为xkm,AD为xkm,则有x+x=2,求出x的值,再与0.7比较大小,即可得出答案.【详解】解:如图所示,过点C作CD⊥AB,垂足为点D,由题意可得∠CAB=30°,∠CBA=45°,在Rt△CDB中,∠BCD=45°,∴∠CBA=∠BCD,∴BD=CD.在Rt△ACD中,∠CAB=30°,∴AC=2CD.设CD=DB=x,∴AC=2x.由勾股定理得AD=.∵AD+DB=2.732,∴x+x=2.732,∴x≈1.即CD≈1>0.7,∴计划修筑的这条公路不会穿过公园.【点睛】本题考查了解直角三角形及勾股定理的应用,用到的知识点是方向角和含30度角的直角三角形的性质,关键是根据题意画出图形,作出辅助线,构造直角三角形.19.(1)见解析;(2)见解析;(3).【解析】【分析】(1)根据菱形的性质:菱形的四边都相等,利用网格画出对应的菱形即可;(2)根据图中所给的AB计算出AB的长不等于5,即AB为底,然后利用勾解析:(1)见解析;(2)见解析;(3).【解析】【分析】(1)根据菱形的性质:菱形的四边都相等,利用网格画出对应的菱形即可;(2)根据图中所给的AB计算出AB的长不等于5,即AB为底,然后利用勾股定理找出E点即可;(3)利用勾股定理进行相应的计算即可得到答案.【详解】解:(1)根据菱形的性质:菱形的四边都相等,菱形的面积为8,画出的图形如下图所示(2)如图所示∴AB为等腰三角形ABE的底∴AE=BE=5∴下图即为所求(3)如图所示,连接EC则由题意得【点睛】本题主要考查了应用设计与作图,正确利用网格结合勾股定理是解题的关键.20.(1)见解析;(2)证明见解析;探究:菱形【分析】(1)根据矩形性质直接根据边角边证明△ABE≌DCF即可;(2)证明AE∥DF,AE=DF,可得结论;探究:证明FD=FE,可得结论.【详解析:(1)见解析;(2)证明见解析;探究:菱形【分析】(1)根据矩形性质直接根据边角边证明△ABE≌DCF即可;(2)证明AE∥DF,AE=DF,可得结论;探究:证明FD=FE,可得结论.【详解】.证明:(1)∵四边形ABCD为矩形,∴AB=DC,∠B=∠DCF,∵BE=CF,∴△ABE≌DCF;(2)∵△ABE≌DCF,∴∠AEB=∠F,AE=DF,∴AE∥DF,∴AE=DF,∴四边形AEFD是平行四边形.(3)此时四边形AEFD是菱形.理由:如图1中,连接DE.∵DE平分∠AEC,∴∠AED=∠DEF,∵AD∥EF,∴∠ADE=∠DEF,∴∠ADE=∠AED,∴AD=AE,∵四边形AEFD是平行四边形,∴四边形AEFD是菱形.【点睛】本题属于四边形综合题,考查了矩形的性质,平行四边形的判定和性质,菱形的判定等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.21.(1)-(2)9【解析】【分析】(1)根据已知的3个等式发现规律:,把n=22代入即可求解;(2)先利用上题的规律将每一个分数化为两个二次根式的差的形式,再计算即可.【详解】解:(1解析:(1)-(2)9【解析】【分析】(1)根据已知的3个等式发现规律:,把n=22代入即可求解;(2)先利用上题的规律将每一个分数化为两个二次根式的差的形式,再计算即可.【详解】解:(1);(2)计算:===10-1=9.22.(1)3元;(2)15<x≤22,见解析【分析】(1)根据起步价为5公里(含)2元;超过5公里后,5公里~15公里(含),按每5公里加收1元计价(不足5公里按5公里计价),5<6<15,票价在2解析:(1)3元;(2)15<x≤22,见解析【分析】(1)根据起步价为5公里(含)2元;超过5公里后,5公里~15公里(含),按每5公里加收1元计价(不足5公里按5公里计价),5<6<15,票价在2元的基础上加1元即可;(2)根据票价为5元,按着铁路收费的标准即可求出铁路长的取值范围,根据题意画出图象.【详解】解:(1)∵5<6<15,且6﹣5=1<5,∴从福州火车站到南门兜站的地铁票价为2+1=3(元),答:从福州火车站到南门兜站的地铁票价为3元;(2)当票价为5元时,由题意知:铁路长5公里时票价2元,10公里时票价2+1=3元,15公里时票价3+1=4元,∴x>15,又∵15公里﹣29公里(含),按每7公里加收1元计价(不足7公里按7公里计价),∴铁路长22公里时票价4+1=5元,∴x≤22,因此x的取值范围:15<x≤22,根据上面计算结果,画函数图象如图所示.【点睛】本题考查一次函数的应用,关键是分清铁路长在不同范围内的票价情况.23.(1)见解析;(2);(3)8或或6【分析】(1)连结,证明,得到相等的角,再由平行线的性质证明,从而得,由菱形的定义判定四边形是菱形;(2)连结,交于点,作于点,由菱形的面积及边长求出菱形的解析:(1)见解析;(2);(3)8或或6【分析】(1)连结,证明,得到相等的角,再由平行线的性质证明,从而得,由菱形的定义判定四边形是菱形;(2)连结,交于点,作于点,由菱形的面积及边长求出菱形的高,再求的长,由勾股定理列出关于、的等式,整理得到关于的函数解析式;(3)以为腰的等腰三角形分三种情况,其中有两种情况是等腰三角形与或全等,另一种情况可由(2)中求得的菱形的高求出的长,再求等腰三角形的底边长.【详解】解:(1)证明:如图1,连结,,,,,,即;四边形是平行四边形,,,,,四边形是菱形(2)如图2,连结,交于点,作于点,则,由(1)得,四边形是菱形,,,,,,,,由,且,得,解得;,,由,且,得,点在边上且不与点、重合,,关于的函数解析式为,(3)如图3,,且点在的延长线上,,,,,,,,,,,,,,,,,,即等腰三角形的底边长为8;如图4,,作于点,于点,则,,,,,,由(2)得,,,,即等腰三角形的底边长为;如图5,,点与点重合,连结,,,,,,即,等腰三角形的底边长为6.综上所述,以为腰的等腰三角形的底边长为8或或6,故答案为:8或或6.【点睛】此题重点考查菱形的性质、全等三角形的判定与性质、等腰三角形的判定、勾股定理、求与几何图形有关的函数关系式等知识与方法,在解第(3)题时,需要进行分类讨论,求出所有符合条件的值,以免丢解.24.(1);(2),或;(3)5或0或【解析】【分析】(1)由的面积,求出,由,进而求解;(2)①当为时,证明,得到点的坐标为,进而求解;②当时,过点作轴于点,当时,,即可求解;(3)分点是中解析:(1);(2),或;(3)5或0或【解析】【分析】(1)由的面积,求出,由,进而求解;(2)①当为时,证明,得到点的坐标为,进而求解;②当时,过点作轴于点,当时,,即可求解;(3)分点是中点、点是中点、点是中点三种情况,利用一次函数的性质,求出点的坐标,进而求解.【详解】解:(1)一次函数与坐标轴交于,两点,故点、的坐标分别为、,则,则的面积,解得,则设点的坐标为,则,解得,故点的坐标为,设的表达式为,则,解得,故直线的表达式为;(2)令,解得,设直线交轴于点,在中有一个内角是,这个角不可能是,①当为时,过点作于点,过点作轴的平行线,交过点与轴的平行线于点,交过点与轴的平行线于点,,为等腰直角三角形,则,,,,,,,,,,故点的坐标为,由点、坐标,同理可得,直线的表达式为,联立和并解得,故点的坐标为,;②当时,过点作轴于点,当时,,即点;综上,点的坐标为,或;(3)设点的坐标为,则的表达式为,联立上式与并解得,即点的横坐标为,①当点是中点时,则点、的横坐标互为相反数,即,解得(舍去)或20,故点的坐标为,②当点是中点时,同理可得:,解得(舍去)或,故点的坐标为,;③当点是中点时,同理可得,点,;当点的坐标为,时,如图2,设直线交轴于点,由点、的坐标得:直线的表达式为,故,则的面积;当点的坐标为时,同理可得:的面积;当点的坐标为,时,同理可得:的面积,综上,的面积为5或0或.【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、等腰三角形的性质、三角形全等、面积的计算等,其中(3),要注意分类求解,避免遗漏.25.(1)①详见解析;②详见解析;(2)当BE≠DF时,(BE+DF)2+EF2=2AB2仍然成立,理由详见解析;(3)【分析】(1)①连接ED、BF,证明四边形BEDF是平行四边形,根据平行四边形解析:(1)①详见解析;②详见解析;(2)当BE≠DF时,(BE+DF)2+EF2=2AB2仍然成立,理由详见解析;(3)【分析】(1)①连接ED、BF,证明四边形BEDF是平行四边形,根据平行四边形的性质证明;②根据正方形的性质、勾股定理证明;(2)过D作DM⊥BE交BE的延长线于M,连接BD,证明四边形EFDM是矩形,得到EM=DF,DM=EF,∠BMD=90°,根据勾股定理计算;(3)过P作PE⊥PD,过B作BELPE于E,根据(2)的结论求出PE,结合图形解答.【详解】(1)证明:①连接ED、BF,∵BE∥DF,BE=DF,∴四边形BEDF是平行四边形,∴BD、EF互相平分;②设BD交EF于点O,则OB=OD=BD,OE=OF=EF.∵EF⊥BE,∴∠BEF=90°.在Rt△BEO中,BE2+OE2=OB2.∴(BE+DF)2+EF2=(2BE)2+(2OE)2=4(BE2+OE2)=4OB2=(2OB)2=BD2.在正方形ABCD中,AB=AD,BD2=AB2+AD2=2AB2.∴(BE+DF)2+EF2=2AB2;(2)解:当BE≠DF时,(BE+DF)2+EF2=2AB2仍然成立,理由如下:如图2,过D作DM⊥BE交BE的延长线于M,连接BD.∵BE∥DF,EF⊥BE,∴EF⊥DF,∴四边形EFDM是矩形,∴EM=DF,DM=EF,∠BMD=90°,在Rt△BDM中,BM2+DM2=BD2,∴(BE+EM)2+DM2=BD2.即(BE+DF)2+EF2=2AB2;(3)解:过P作PE⊥PD,过B作BE⊥PE于E,则由上述结论知,(BE+PD)2+PE2=2AB2.∵∠DPB=135°,∴∠BPE=45°,∴∠PBE=45°,∴BE=PE.∴△PBE是等腰直角三角形,∴BP=BE,∵BP+2PD=4,∴2BE+2PD=4,即BE+PD=2,∵AB=4,∴(2)2+PE2=2×42,解得,PE=2,∴BE=2,∴PD=2﹣2.【点睛】本题考查的是正方形的性质、等腰直角三角形的性质以及勾股定理的应用,正确作出辅助性、掌握正方形的性质是解题的关键.26.(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年小学教师资格考试《综合素质》教育资源整合教育发展题(含答案)
- 家庭教育行业的发展趋势
- 怎做销售管理的培训
- 2025-2030羊绒行业风险投资发展分析及投资融资策略研究报告
- 2025-2030纯音听力计行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 2025-2030紫外线激光行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 2025-2030程控交换机市场发展分析及行业投资战略研究报告
- 2025-2030硅酸盐材料行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 2025-2030睡裤产业行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030相序指示器行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 第15课《青春之光》课件-2024-2025学年统编版语文七年级下册
- 世界给予我的 课件-2024-2025学年高二下学期开学第一课主题班会
- GB/T 32482-2024机动车用白光LED封装的颜色分选
- 2024年浙江省中考英语试卷及答案
- LNG加气站施工方案
- 演员王星受骗事件教育宣传预防诈骗
- 互动式医学课堂教学设计
- 安宁疗护的症状管理:发热
- 2024年北京老年医院招聘笔试真题
- 修理厂入股合同
- 2024年医师定期考核临床类考试题库及答案(共500题)
评论
0/150
提交评论