含绝对值不等式解法教案_第1页
含绝对值不等式解法教案_第2页
含绝对值不等式解法教案_第3页
含绝对值不等式解法教案_第4页
含绝对值不等式解法教案_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

教学案例§1.4含绝对值的不等式解法学校:织金二中组别:数学组姓名:田茂松教学目标:(一)知识目标(认知目标)1、理解并会求的解集;2、掌握的解法.(二)能力目标1、通过不等式的求解,加强学生的运算能力;2、培养学生数形结合、整体代换、等价转化等的思想.(三)情感目标1、感悟形与数不同的数学形态间的和谐同一美;2、培养学生学习数学的兴趣,增加学习的信心.教学重点:与型不等式的解法.教学难点:含绝对值不等式变换的等价性问题的技巧.教学方法:探究研讨法,讲练结合法等.教学准备(教具):直尺,彩色粉笔,小黑板.课型:新授课.教学过程(一)复习回顾绝对值是怎么定义的呢?(通过抽问回答补充的方式)绝对值定义,一个数的绝对值表示数轴上一点到原点的距离.000结合数轴即可知道,(二)创设情景大家先看这样一个数学问题:已知为一次函数上一点,若该点到轴的距离不大于5,求点的横坐标的取值范围.(师生讨论)这个问题我们可以用数形结合的方法来解决.我们先作函数的图像,由图像易知其上一点到轴的距离为点纵坐标的绝对值,依题意得,将代入得,只要解出此不等式,即可求出点的横坐标的取值范围.那我们又怎么来解决这类含绝对值的不等式呢?这就是本节我们要讨论的问题,大家先翻开书看书的第14页到第15页.(三)讲授新课1、不等式的解法先来看一个特殊的例子,.由绝对值的定义可知,它表示到原点距离为5的点,结合数轴,我们可以知道方程的解是.我们再来看相应的不等式.由绝对值的几何意义,结合数轴表示易知,表示数轴上到原点距离小于5的点的集合,在数轴上表示如下我们用前面学习的集合来表示它的解,则应表示为:.同样,表示到原点距离大于5的集合,在数轴上的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论