版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古包头市第一机械制造有限公司第一中学2023年高二上数学期末质量检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在等比数列中,,则的公比为()A. B.C. D.2.传说古希腊毕达哥拉斯学派的数学家用沙粒和小石子研究数,他们根据沙粒和石子所排列的形状把数分成许多类,若:三角形数、、、、,正方形数、、、、等等.如图所示为正五边形数,将五边形数按从小到大的顺序排列成数列,则此数列的第4项为()A. B.C. D.3.设R,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.已知,,若,则xy的最小值是()A. B.C. D.5.在正方体中,为棱的中点,则异面直线与所成角的正切值为A. B.C. D.6.已知双曲线C:(a>0,b>0),斜率为的直线与双曲线交于不同的两点,且线段的中点为P(2,4),则双曲线的渐近线方程为()A. B.C. D.7.下列命题中,结论为真命题的组合是()①“”是“直线与直线相互垂直”的充分而不必要条件②若命题“”为假命题,则命题一定是假命题③是的必要不充分条件④双曲线被点平分的弦所在的直线方程为⑤已知过点的直线与圆的交点个数有2个.A.①③④ B.②③④C.①③⑤ D.①②⑤8.已知是公差为3的等差数列.若,,成等比数列,则的前10项和()A.165 B.138C.60 D.309.过双曲线-=1(a>0,b>0)的左焦点F(-c,0)作圆O:x2+y2=a2的切线,切点为E,延长FE交双曲线于点P,若E为线段FP的中点,则双曲线的离心率为()A. B.C.+1 D.10.已知点是椭圆方程上的动点,、是直线上的两个动点,且满足,则()A.存在实数使为等腰直角三角形的点仅有一个B.存在实数使为等腰直角三角形的点仅有两个C.存在实数使为等腰直角三角形的点仅有三个D.存在实数使为等腰直角三角形的点有无数个11.已知“”的必要不充分条件是“或”,则实数的最小值为()A. B.C. D.12.在中,若,,,则此三角形解的情况为()A.无解 B.两解C.一解 D.解的个数不能确定二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线的焦点为F,A为抛物线C上一点.以F为圆心,FA为半径的圆交抛物线C的准线于B,D两点,A,F,B三点共线,且,则______14.已知点,则线段的垂直平分线的一般式方程为__________.15.已知抛物线C:的焦点为F,过M(4,0)的直线交C于A、B两点,设,的面积分别为、,则的最小值为______16.已知直线与圆交于A,B两点,过A,B分别做l的垂线与x轴交于C,D两点,若|AB|=4,则|CD|=_____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知三角形内角所对的边分别为,且C为钝角.(1)求cosA;(2)若,,求三角形的面积.18.(12分)已知正项等差数列满足:,且,,成等比数列(1)求的通项公式;(2)设的前n项和为,且,求的前n项和19.(12分)在平面直角坐标系xOy中,椭圆C的左,右焦点分别为F1(﹣,0),F2(,0),且椭圆C过点(﹣).(1)求椭圆C的标准方程;(2)设过(0,﹣2)的直线l与椭圆C交于M,N两点,O为坐标原点,若,求直线l的方程.20.(12分)2021年7月29日,中国游泳队获得了女子米自由泳接力决赛冠军并打破世界纪录.受奥运精神的鼓舞,某游泳俱乐部组织100名游泳爱好者进行自由泳1500米测试,并记录他们的时间(单位:分钟),将所得数据分成5组:,,,,,整理得到如图所示的频率分布直方图.(1)求出直方图中m的值;(2)利用样本估计总体的思想,估计这100位游泳爱好者1500米自由泳测试时间的平均数和中位数(同一组中的数据用该组区间中点值作代表).21.(12分)已知点,圆.(1)若直线l过点M,且被圆C截得的弦长为,求直线l的方程;(2)设O为坐标原点,点N在圆C上运动,线段的中点为P,求点P的轨迹方程.22.(10分)2021年11月初某市出现新冠病毒感染者,该市教育局部署了“停课不停学”的行动,老师们立即开展了线上教学.某中学为了解教学效果,于11月30日复课第一天安排了测试,数学教师为了调查高二年级学生这次测试的数学成绩与每天在线学习数学的时长之间的相关关系,对在校高二学生随机抽取45名进行调查,了解到其中有25人每天在线学习数学的时长不超过1小时,并得到如下的统计图:(1)根据统计图填写下面列联表,是否有95%的把握认为“高二学生的这次摸底考试数学成绩与其每天在线学习数学的时长有关”;数学成绩不超过120分数学成绩超过120分总计每天在线学习数学的时长不超过1小时25每天在线学习数学的时长超过1小时总计45(2)从被抽查的,且这次数学成绩超过120分的学生中,按分层抽样的方法抽取5名,再从这5名同学中随机抽取2名,求这两名同学中至多有一名每天在线学习数学的时长超过1小时的概率附:,其中.参考数据:0.1000.0500.0100.0012.7063.8416.63510.828
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用等比数列的性质把方程都变成和有关的式子后进行求解.【详解】由等比数列的等比中项性质可得,又,所以,因,所以,所以,故选:D.2、D【解析】根据前三个五边形数可推断出第四个五边形数.【详解】第一个五边形数为,第二个五边形数为,第三个五边形数为,故第四个五边形数为.故选:D.3、A【解析】根据不等式性质判断即可.【详解】若“”,则成立;反之,若,当,时,不一定成立.如,但.故“”是“”的充分不必要条件.故答案为:A.【点睛】本题考查充分条件、必要调价的判断,考查不等式与不等关系,属于基础题.4、C【解析】对使用基本不等式,这样得到关于的不等式,解出xy的最小值【详解】因为,,由基本不等式得:,所以,解得:,当且仅当,即,时,等号成立故选:C5、C【解析】利用正方体中,,将问题转化为求共面直线与所成角的正切值,在中进行计算即可.【详解】在正方体中,,所以异面直线与所成角为,设正方体边长为,则由为棱的中点,可得,所以,则.故选C.【点睛】求异面直线所成角主要有以下两种方法:(1)几何法:①平移两直线中的一条或两条,到一个平面中;②利用边角关系,找到(或构造)所求角所在的三角形;③求出三边或三边比例关系,用余弦定理求角;(2)向量法:①求两直线的方向向量;②求两向量夹角的余弦;③因为直线夹角为锐角,所以②对应的余弦取绝对值即为直线所成角的余弦值.6、C【解析】设,代入双曲线方程相减后可求得,从而得渐近线方程【详解】设,则,相减得,∴,又线段的中点为P(2,4),的斜率为1,∴,,∴渐近线方程为故选:C【点睛】方法点睛:本题考查求双曲线的渐近线方程,已知弦的中点(或涉及到中点),可设弦两端点的坐标,代入双曲线方程后作差,作差后式子中有直线的斜率,弦中点坐标,有.这种方法叫点差法7、C【解析】求出两直线垂直时m值判断①;由复合命题真值表可判断②;化简不等式结合充分条件、必要条件定义判断③;联立直线与双曲线的方程组成的方程组验证判断④;判定点与圆的位置关系判断⑤作答.【详解】若直线与直线相互垂直,则,解得或,则“”是“直线与直线相互垂直”的充分而不必要条件,①正确;命题“”为假命题,则与至少一个是假命题,不能推出一定是假命题,②不正确;,,则是的必要不充分条件,③正确;由消去y并整理得:,,即直线与双曲线没有公共点,④不正确;点在圆上,则直线与圆至少有一个公共点,而过点与圆相切的直线为,直线不包含,因此,直线与圆相交,有两个交点,⑤正确,所以所有真命题的序号是①③⑤.故选:C8、A【解析】由等差数列的定义与等比数列的性质求得首项,然后由等差数列的前项和公式计算【详解】因为,,成等比数列,所以,所以,解得,所以故选:A9、A【解析】设F′为双曲线的右焦点,连接OE,PF′,根据圆的切线性质和三角形中位线得到|OE|=a,|PF′|=2a,利用双曲线的定义求得|PF|=4a,得到|EF|=2a,在Rt△OEF中,利用勾股定理建立关系即可求得离心率的值.【详解】不妨设E在x轴上方,F′为双曲线的右焦点,连接OE,PF′,如图所示:因为PF是圆O的切线,所以OE⊥PE,又E,O分别为PF,FF′的中点,所以|OE|=|PF′|,又|OE|=a,所以|PF′|=2a,根据双曲线的定义,|PF|-|PF′|=2a,所以|PF|=4a,所以|EF|=2a,在Rt△OEF中,|OE|2+|EF|2=|OF|2,即a2+4a2=c2,所以e=,故选A.【点睛】本题考查双曲线的离心率的求法,联想到双曲线的另一个焦点,作辅助线,利用双曲线的定义是求解离心率问题的有效方法.10、B【解析】求出点到直线的距离的取值范围,对点是否为直角顶点进行分类讨论,确定、的等量关系,综合可得出结论.【详解】设点,则点到直线的距离为.因为椭圆与直线均关于原点对称,①若为直角顶点,则.当时,此时,不可能是等腰直角三角形;当时,此时,满足是等腰直角三角形的直角顶点有两个;当时,此时,满足是等腰直角三角形的直角顶点有四个;②若不是直角顶点,则.当时,满足是等腰直角三角形的非直角顶点不存在;当时,满足是等腰直角三角形的非直角顶点有两个;当时,满足是等腰直角三角形非直角顶点有四个.综上所述,当时,满足是等腰直角三角形的点有八个;当时,满足是等腰直角三角形的点有六个;当时,满足是等腰直角三角形的点有四个;当时,满足是等腰直角三角形的点有两个;当时,满足是等腰直角三角形的点不存在.故选:B.11、A【解析】首先解不等式得到或,根据题意得到,再解不等式组即可.【详解】,解得或,因为“”的必要不充分条件是“或”,所以.实数的最小值为.故选:A12、C【解析】求出的值,结合大边对大角定理可得出结论.【详解】由正弦定理可得可得,因为,则,故为锐角,故满足条件的只有一个.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】求得抛物线的焦点和准线方程,由,,三点共线,推得,由三角形的中位线性质可得到准线的距离,可得的值【详解】抛物线的焦点为,,准线方程为,因为,,三点共线,可得为圆的直径,如图示:设准线交x轴于E,所以,则,由抛物线的定义可得,又是的中点,所以到准线的距离为,故答案为:214、【解析】由中点坐标公式和斜率公式可得的中点和直线斜率,由垂直关系可得垂直平分线的斜率,由点斜式可得直线方程,化为一般式即可【详解】由中点坐标公式可得,的中点为,可得直线的斜率为,由垂直关系可得其垂直平分线的斜率为,故可得所求直线的方程为:,化为一般式可得故答案为:15、【解析】设直线的方程为,,与抛物线的方程联立整理得,由三角形的面积公式求得,再根据基本不等式可得答案.【详解】解:由抛物线C:得焦点,又直线交C于A、B两点,所以直线的斜率不为0,则设直线的方程为,,联立,整理得,则,又,,所以,又,当且仅当,即时取等号,所以的最小值为.故答案为:.16、【解析】先求出圆心和半径,由于半径为2,弦|AB|=4,所以可知直线过圆心,从而得,求出,得到直线方程且倾斜角为135°,进而可求出|CD|【详解】圆,圆心(1,2),半径r=2,∵|AB|=4,∴直线过圆心(1,2),∴,∴,∴直线,倾斜角为135°,∵过A,B分别做l的垂线与x轴交于C,D两点,∴.故答案为:4【点睛】此题考查直线与圆的位置关系,考查两直线的位置关系,考查转化思想和计算能力,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由正弦定理边化角,可求得角的正弦,由同角关系结合条件可得答案.(2)由(1),由余弦定理,求出边的长,进一步求得面积【小问1详解】因为,由正弦定理得因为,所以.因为角为钝角,所以角为锐角,所以小问2详解】由(1),由余弦定理,得,所以,解得或,不合题意舍去,故的面积为=18、(1);(2).【解析】(1)利用等差数列的通项公式结合条件即求;(2)利用条件可得,然后利用错位相减法即求.【小问1详解】设等差数列公差为d,由得,即,化简得,又,,成等比数列,则,即,将代入上式得,化简得,解得或-2(舍去),则,所以【小问2详解】∵,当时,,当时,,符合上式,则,所以,令,则,,∴,化简得综上,的前n项和19、(1)(2)或.【解析】(1)设标准方程代入点的坐标,解方程组得解.(2)设直线方程代入椭圆方程消元,韦达定理整体思想,可得直线斜率得解.【小问1详解】因为椭圆C的焦点为,可设椭圆C的方程为,又点在椭圆C上,所以,解得,因此,椭圆C的方程为;【小问2详解】当直线的斜率不存在时,显然不满足题意;当直线的斜率存在时,设直线的方程为,设,,因为,所以,因为,,所以,所以,①联立方程,消去得,则,代入①,得,解得,经检验,此时直线与椭圆相交,所以直线l的方程是或.20、(1)(2),【解析】(1)利用频率之和也即各矩形的面积和为1即可求解.(2)利用平均数和中位数的计算方法求解即可.【小问1详解】由,可得.【小问2详解】平均数为:,设中位数为,则,解得.21、(1)或(2)【解析】(1)由直线被圆C截得的弦长为,求得圆心到直线的距离为,分直线的斜率不存在和斜率存在两种情况讨论,结合点到直线的距离公式,列出方程,即可求解.(2)设点,,根据线段的中点为,求得,结合在圆上,代入即可求解.【小问1详解】解:由题意,圆,可得圆心,半径,因为直线被圆C截得的弦长为,则圆心到直线的距离为,当直线的斜率不存在时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人研修心得感悟
- 会计电算化专业求职信范文
- 亚运会心得体会
- 中职学校开学典礼教导主任精彩讲话稿(5篇)
- 个人情绪管理心得体会范文(19篇)
- 动物聚餐课件教学课件
- 探究天然植物制备酸碱指示剂及其pH范围
- 慢性支气管炎临床路径
- 学校教职工代表大会规定
- 航空航天用1100MPa MJ螺纹花键头螺栓 征求意见稿
- 《认识隶书(一)》名师课件
- 食堂醇基燃料应急预案
- 结构设计通用规范(住建部2023年颁布)
- 2023学年完整公开课版时行程问题
- 性格测试98题-最符合和最不符合答案
- 交通运输系统安全生产治本攻坚三年行动方案
- 《平衡計分卡》课件
- 机场运行职业生涯规划书
- 超声科发展规划方案
- 文化与艺术行业2024年人力资源管理与制度优化
- 2024年半导体技术行业培训资料
评论
0/150
提交评论