辽宁省抚顺市省重点高中协作校2023年高二上数学期末教学质量检测试题含解析_第1页
辽宁省抚顺市省重点高中协作校2023年高二上数学期末教学质量检测试题含解析_第2页
辽宁省抚顺市省重点高中协作校2023年高二上数学期末教学质量检测试题含解析_第3页
辽宁省抚顺市省重点高中协作校2023年高二上数学期末教学质量检测试题含解析_第4页
辽宁省抚顺市省重点高中协作校2023年高二上数学期末教学质量检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省抚顺市省重点高中协作校2023年高二上数学期末教学质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.等比数列中,,则()A. B.C.2 D.42.设椭圆C:的左、右焦点分别为、,P是C上的点,⊥,∠=,则C的离心率为A. B.C. D.3.已知、是椭圆的两个焦点,P为椭圆C上一点,且,若的面积为9,则的值为()A.1 B.2C.3 D.44.已知等比数列的前项和为,若公比,则=()A. B.C. D.5.音乐与数学有着密切的联系,我国春秋时期有个著名的“三分损益法”:以“宫”为基本音,“宫”经过一次“损”,频率变为原来的,得到“微”,“微”经过一次“益”,频率变为原来的,得到“商”……依此规律损益交替变化,获得了“宫”“微”“商”“羽”“角”五个音阶.据此可推得()A.“商”“羽”“角”的频率成公比为的等比数列B.“宫”“微”“商”的频率成公比为的等比数列C.“宫”“商”“角”的频率成公比为的等比数列D.“角”“商”“宫”的频率成公比为的等比数列6.已知命题p:函数在(0,1)内恰有一个零点;命题q:函数在上是减函数,若p且为真命题,则实数的取值范围是A. B.2C.1<≤2 D.≤l或>27.已知等比数列的前项和为,公比为,则()A. B.C. D.8.已知双曲线的左、右焦点分别为,,过点作直线交双曲线的右支于A,B两点.若,则双曲线的离心率为()A. B.C. D.9.设数列的前项和为,数列是公比为2的等比数列,且,则()A.255 B.257C.127 D.12910.已知数列是递减的等比数列,的前项和为,若,,则=()A.54 B.36C.27 D.1811.已知两条异面直线的方向向量分别是,,则这两条异面直线所成的角满足()A. B.C. D.12.如图,在长方体中,是线段上一点,且,若,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线:,若直线与抛物线C相交于M,N两点,则_______________.14.若函数在区间上单调递减,则实数的取值范围是________;15.已知直线:和:,且,则实数__________,两直线与之间的距离为__________16.命题“若,则”的否命题为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,,且,求实数的取值范围.18.(12分)已知椭圆,焦点,A,B是上关于原点对称的两点,的周长的最小值为(1)求的方程;(2)直线FA与交于点M(异于点A),直线FB与交于点N(异于点B),证明:直线MN过定点19.(12分)设,已知函数(1)若,求函数在处切线的方程;(2)求函数在上的最大值20.(12分)已知椭圆左,右顶点分别是,,且,是椭圆上异于,的不同的两点(1)若,证明:直线必过坐标原点;(2)设点是以为直径的圆和以为直径的圆的另一个交点,记线段的中点为,若,求动点的轨迹方程21.(12分)在如图所示的多面体中,且,,,且,,且,平面,(1)求证:;(2)求平面与平面夹角的余弦值22.(10分)区块链技术被认为是继蒸汽机、电力、互联网之后,下一代颠覆性的核心技术区块链作为构造信任的机器,将可能彻底改变整个人类社会价值传递的方式,2015年至2019年五年期间,中国的区块链企业数量逐年增长,居世界前列现收集我国近5年区块链企业总数量相关数据,如表年份20152016201720182019编号x12345企业总数量y(单位:千个)2.1563.7278.30524.27936.224注:参考数据,,,(其中).附:样本的最小二乘法估计公式为,(1)根据表中数据判断,与(其中,为自然对数的底数),哪一个回归方程类型适宜预测未来几年我国区块链企业总数量?(给出结果即可,不必说明理由)(2)根据(1)的结果,求y关于x的回归方程;(3)为了促进公司间的合作与发展,区块链联合总部决定进行一次信息化技术比赛,邀请甲、乙、丙三家区块链公司参赛比赛规则如下:①每场比赛有两个公司参加,并决出胜负;②每场比赛获胜的公司与未参加此场比赛的公司进行下一场的比赛;③在比赛中,若有一个公司首先获胜两场,则本次比赛结束,该公司就获得此次信息化比赛的“优胜公司”,已知在每场比赛中,甲胜乙的概率为,甲胜丙的概率为,乙胜丙的概率为,若首场由甲乙比赛,则求甲公司获得“优胜公司”的概率.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用等比数列的下标特点,即可得到结果.【详解】∵,∴,∴,∴.故选:D2、D【解析】详解】由题意可设|PF2|=m,结合条件可知|PF1|=2m,|F1F2|=m,故离心率e=选D.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.3、C【解析】根据椭圆定义,和条件列式,再通过变形计算求解.【详解】由条件可知,,即,解得:.故选:C【点睛】本题考查椭圆的定义,焦点三角形的性质,重点考查转化与变形,计算能力,属于基础题型.4、A【解析】根据题意,由等比数列的通项公式与前项和公式直接计算即可.【详解】由已知可得.故选:A.5、C【解析】根据文化知识,分别求出相对应的频率,即可判断出结果【详解】设“宫”的频率为a,由题意经过一次“损”,可得“徵”的频率为a,“徵”经过一次“益”,可得“商”的频率为a,“商”经过一次“损”,可得“羽”频率为a,最后“羽”经过一次“益”,可得“角”的频率是a,由于a,a,a成等比数列,所以“宫、商、角”的频率成等比数列,且公比为,故选:C【点睛】本题考查等比数列的定义,考查学生的运算能力和转换能力及思维能力,属于基础题6、C【解析】命题p为真时:;命题q为真时:,因为p且为真命题,所以命题p为真,命题q为假,即,选C考点:命题真假7、D【解析】利用等比数列的求和公式可求得的值.【详解】由等比数列的求和公式可得,解得.故选:D.8、A【解析】根据给定条件结合双曲线定义求出,,再借助余弦定理求出半焦距c即可计算作答.【详解】因,令,,而双曲线实半轴长,由双曲线定义知,,而,于是可得,在等腰中,,令双曲线半焦距为c,在中,由余弦定理得:,而,,,解得,所以双曲线的离心率为.故选:A【点睛】方法点睛:求双曲线的离心率的方法:(1)定义法:通过已知条件列出方程组,求得得值,根据离心率的定义求解离心率;(2)齐次式法:由已知条件得出关于的二元齐次方程,然后转化为关于的一元二次方程求解;(3)特殊值法:通过取特殊值或特殊位置,求出离心率.9、C【解析】由题设可得,再由即可求值.【详解】由数列是公比为2的等比数列,且,∴,即,∴.故选:C.10、C【解析】根据等比数列的性质及通项公式计算求解即可.【详解】由,解得或(舍去),,,故选:C11、D【解析】利用向量夹角余弦公式直接求解【详解】解:两条异面直线的方向向量分别是,,这两条异面直线所成的角满足:,,故选:D12、A【解析】将利用、、表示,再利用空间向量的加法可得出关于、、的表达式,进而可求得的值.【详解】连接、,因,因为是线段上一点,且,则,因此,因此,.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、8【解析】直线方程代入抛物线方程,应用韦达定理根据弦长公式求弦长【详解】设,由得,所以,,故答案为:814、【解析】函数,又函数在区间上单调递减∴在区间上恒成立即,解得:,当时,经检验适合题意故答案为【点睛】f(x)为增函数的充要条件是对任意的x∈(a,b)都有f′(x)≥0且在(a,b)内的任一非空子区间上f′(x)≠0.应注意此时式子中的等号不能省略,否则漏解15、①.-4;②.2【解析】根据两直线平行斜率相等求解参数即可;运用两平行线间的距离公式计算两直线之间的距离可得出答案.【详解】解:直线和,,,解得;∴两直线与间的距离是:.故答案为:;2.16、若,则【解析】否命题是对命题的条件和结论同时否定,同时否定和即可.命题“若,则”的否命题为:若,则考点:四种命题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、.【解析】求得集合,根据,分和,两种情况讨论,结合二次函数的性质,即可求解.【详解】由题意,集合当时,即,解得,此时满足,当时,要使得,则或,当时,可得,即,此时,满足;当时,可得,即,此时,不满足,综上可知,实数的取值范围为.18、(1)(2)证明见解析【解析】(1)设椭圆的左焦点为,根据椭圆的对称性可得,则三角形的周长为,再设根据二次函数的性质得到,即可求出的周长的最小值为,从而得到,再根据,即可求出、,从而求出椭圆方程;(2)设直线MN的方程,,,,联立直线与椭圆方程,消元列出韦达定理,再设直线的方程、,直线的方程、,联立直线方程,消元列出韦达定理,即可表示,即可得到,整理得,再代入,,即可得到,从而求出,即可得解;【小问1详解】设椭圆的左焦点为,则由对称性,,所以的周长为设,则,当A,B是椭圆的上下顶点时,的周长取得最小,所以,即,又椭圆焦点,所以,所以,所以,解得,,所以椭圆的方程为.【小问2详解】解:当A,B为椭圆左右顶点时,直线MN与x轴重合;当A,B为椭圆上下顶点时,可得直线MN的方程为;设直线MN的方程,,,,由得,,,,设直线的方程,其中,,,由得,,,,设直线的方程,其中,,由得,,,所以,所以,所以,则,即,代入,,得,整理得,又所以,直线MN的方程为,综上直线MN过定点19、(1)(2)当0≤a<2时,f(x)max=8-5a;当a≥2时,f(x)max=-a【解析】(1)根据导数的几何意义即可求解;(2)先求函数的导数,令导数等于零,求得两极值点,然后讨论极值点是否在所给区间内,再结合比较区间端点处的函数值的大小,可得答案.【小问1详解】因为,所以,即a=0,所以,f(1)=1,所以切线方程:y-1=3(x-1),即.【小问2详解】,令得,①当a=0时,f(x)=x3在[0,2]上为单调递增函数,所以f(x)max=f(2)=8;②当时,即a≥3时,f(x)在[0,2]上为单调递减函数,所以;③当时,即0<a<3时,f(x)在上单调递减,在单调递增,所以f(x)=max{f(0),f(2)},(i)若f(0)≥f(2),即2≤a<3,f(x)max=f(0)=-a,(ii)若f(0)<f(2),即0<a<2,f(x)max=f(2)=8-5a;综上,当0≤a<2时,f(x)max=f(2)=8-5a;当a≥2时,f(x)max=f(0)=-a20、(1)证明见解析;(2).【解析】(1)设,首先证明,从而可得到,即得到;进而可得到四边形为平行四边形;再根据为的中点,即可证明直线必过坐标原点(2)设出直线的方程,与椭圆方程联立,消元,写韦达;根据条件可求出直线MN过定点,从而可得到过定点,进而可得到点在以为直径的圆上运动,从而可求出动点的轨迹方程【小问1详解】设,则,即因为,,所以因为,所以,所以.同理可证.因为,,所以四边形为平行四边形,因为为的中点,所以直线必过坐标原点【小问2详解】当直线的斜率存在时,设直线的方程为,,联立,整理得,则,,.因为,所以,因为,解得或.当时,直线的方程为过点A,不满足题意,所以舍去;所以直线的方程为,所以直线过定点.当直线的斜率不存在时,因为,所以直线的方程为,经验证,符合题意.故直线过定点.因为为的中点,为的中点,所以过定点.因为垂直平分公共弦,所以点在以为直径的圆上运动,该圆的半径,圆心坐标为,故动点的轨迹方程为21、(1)证明见解析(2)【解析】(1)根据线面垂直的性质可得,,如图所示,以为坐标原点建立空间直角坐标系,证明即可得证;(2)求出平面与平面的法向量,再利用向量法即可得解.【小问1详解】证明:因为平面,平面,平面,所以,且,因为,如图所示,以为坐标原点建立空间直角坐标系,则,,,,,,,所以,,,所以;【小问2详解】,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论