




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二章分子结构与性质第三节分子的性质(第一课时)写出:Cl2、HCl的电子式极性共价键非极性共价键一、键的极性和分子的极性(一)键的极性极性分子:正电中心和负电中心不重合非极性分子:正电中心和负电中心重合看正电中心和负电中心
是否重合
化学键的极性的向量和是否等于零看键的极性,也看分子的空间构型
2、判断方法:1、概念(二)分子的极性小结:1、分子的极性与键的极性的关系:
分子共价键的极性分子中正负电荷中心分子的极性举例
H2、N2、O2、P4、C60非极性分子重合非极性键同核原子分子异核双原子分子异核多原子分子极性键分子中各键向量和为零分子中各键向量和不为零重合不重合不重合非极性分子极性分子极性分子CO、HClCO2、CH4HCN、H2O、NH3、CH3Cl具有空间对称结构,中心原子无孤对电子不具有空间对称结构,中心原子有孤对电子练习:1、下列各组分子中,都属于极性键的非极性分子的是()A、CO2、H2SB、CH4、C2H4
C、Cl2、C2H2D、NH3、HCl
B2、NF3和NH3的空间构型是如何的,N—F键和N—H键中,极性较强的是?二、范德华力及其对物质性质的影响结论:范德华力很弱,约比化学键能小1-2数量级分子HCl
HBr
HI范德华力(kJ/mol)21.1423.1126.00共价键键能(kJ/mol)431.8366298.7
影响范德华力大小的因素结论:结构相似,相对分子质量越大,范德华力越大
单质相对分子质量熔点/℃沸点/℃F238-219.6-188.1Cl271-101.0-34.6Br2160-7.258.8I2254113.5184.4分子HClHBrHI
相对分子质量36.581128
范德华力(kJ/mol)21.1423.1126.00
熔点/℃-114.8-98.5-50.8
沸点/℃-84.9-67-35.4
分子相对分子质量分子的极性熔点/℃沸点/℃CO28极性-205.05-191.49N228非极性-210.00-195.81结论:相对分子质量相同或相近时,分子的极性越大,范德华力越大练习:下列叙述正确的是:A.氧气的沸点低于氮气的沸点B、稀有气体原子序数越大沸点越高C、分子间作用力越弱分子晶体的熔点越低D、同周期元素的原子半径越小越易失去电子(BC)探究:为什么水的沸点比H2S、H2Se、H2Te的沸点都要高?三、氢键及其对物质性质的影响是一种特殊的分子间作用力,它是由已经与电负性很强的原子形成共价键的氢原子与另一分子中电负性很强的原子之间的作用力.(不属于化学键)一般表示为X—H------Y(其中X、Y为F、O、N)1、氢键概念以HF为例,F的电负性相当大,电子对偏向F,而H几乎成了质子,这种H与其它分子中电负性相当大、r小的原子相互接近时,产生一种特殊的分子间力——氢键.表示为····:F-H····F-H两个条件:
1.与电负性大且r小的原子(F,O,N)相连的H;2.在附近有电负性大,r小的原子(F,O,N).COHHHHCOHHHH2、氢键的存在(1)分子间氢键氢键普遍存在于已经与N、O、F形成共价键的氢原子与另外的N、O、F原子之间。如:HF、H2O、NH3
相互之间C2H5OH、CH3COOH、H2O相互之间(2)分子内氢键某些物质在分子内也可形成氢键,例如当苯酚在邻位上有—CHO、—COOH、—OH和—NO2时,可形成分子内的氢键,组成“螯合环”的特殊结构3、氢键键能大小:
F—H---FO—H---ON—H---N氢键键能(kJ/mol)28.118.820.9共价键键能(kJ/mol)568462.8390.8结论:氢键介于范德华力和化学键之间,是一种较弱的作用力氢键强弱与X和Y的吸引电子的能力有关,它们的能力越强,则氢键越强,如F原子得电子能力最强,因而F-H…F是最强的氢键原子吸引电子能力不同,氢键强弱变化顺序如下:F-H…F>O-H…O>O-H…N>N-H…NC原子吸引电子能力较弱,一般不形成氢键。4、氢键强弱思考题:1、为什么冰的密度比液态水小?2、为什么邻羟基苯甲醛的沸点比对羟基苯甲醛的低?氢键的特点分子欲形成氢键必须具备两个基本条件,其一是分子中必须有一个与电负性很强的元素形成强极性键的氢原子。其二是分子中必须有带孤电子对,电负性大,而且原子半径小的元素。(1)氢键具有方向性。它是指Y原子与X-Y形成氢键时,尽可能使氢键的方向与X-H键轴在同一条直线上,这样可使X与Y的距离最远,两原子电子云间的斥力最小,因此形成的氢键愈强,体系愈稳定。(2)氢键具有饱和性。它是指每一个X-H只能与一个Y原子形成氢键。这是因为氢原子的半径比X和Y的原子半径小很多,当X-H与一个Y原子形成氢键X-H……Y之后,如有另一个极性分子Y原子接近时,则这个原子受到X、Y强烈排斥,其排斥力比受正电荷的H的吸引力大,故这个H原子未能形成第二个氢键。2)对水和冰密度的影响。水除了熔、沸点显著高于同族外,还有另一个反常现象,就是它在4℃时密度最大。这是因为在4℃以上时,分子的热运动是主要的,使水的体积膨胀,密度减小;在4℃以下时,分子间的热运动降低,形成氢键的倾向增加,形成分子间氢键越多,分子间的空隙越大。当水结成冰时,全部水分子都以氢键连接,形成空旷的结构。见图7-33在冰中每个H原子都参与形成氢键,结果使水分子按四面体分布,每个氧原子周围都有四个氢。这样的结构空旷了,密度也降低了。(3)对物质溶解度的影响。在极性溶剂中,如果溶质分子与溶剂分子之间形成氢键,则溶质的溶解度增大。如HF、NH3极易溶于水。如果溶质分子形成分子内氢键,在极性溶剂中溶解度减小,而在非极性溶剂中溶解度增大。练习:(04广东)下列关于氢键的说法中正确的是()A、每个水分子内含有两个氢键B、在所有的水蒸气、水、冰中都含有氢键C、分子间能形成氢键,使物质的熔沸点升高D、HF稳定性很强,是因为其分子间能形成氢键
C小结:
定义范德华力氢键共价键作用微粒分子间普遍存在的作用力已经与电负性很强的原子形成共价键的氢原子与另一分子中电负性很强的原子之间的作用力原子之间通过共用电子对形成的化学键相邻原子之间分子
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- DB31/T 329.23-2021重点单位重要部位安全技术防范系统要求第23部分:大型活动场所
- DB31/T 1199-2019湿垃圾资源化利用技术要求餐厨有机废弃物制备土壤调理剂
- DB31/T 1112-2018绿色展览会运营导则
- DB31/ 506-2020集成电路晶圆制造单位产品能源消耗限额
- 编织工艺品的供应链可持续发展考核试卷
- 学习型组织与领导科学的关系试题及答案
- 现代化工厂PLC控制系统集成及节能改造协议
- 海外务工人员意外伤害医疗保险代理协议
- 美容美发店员工培训与职业发展合同
- 网红奶茶品牌区域代理权转让协议
- 人才盘点与人才储备计划设计合同
- 医美公司保密协议书
- 道路交通安全宣传课件
- 艺术基金授课协议书
- 2024年广东省普宁市事业单位公开招聘警务岗笔试题带答案
- 《农业机械操作培训》课件
- 2025委托维修服务合同模板
- 广告设计师项目实操试题及答案
- 企业安全环保责任体系构建与实施路径
- 陕西电网面试试题及答案
- 2025下半年广东省东莞市事业单位考试笔试易考易错模拟试题(共500题)试卷后附参考答案
评论
0/150
提交评论