江西省高安第二中学2023-2024学年高二上数学期末复习检测模拟试题含解析_第1页
江西省高安第二中学2023-2024学年高二上数学期末复习检测模拟试题含解析_第2页
江西省高安第二中学2023-2024学年高二上数学期末复习检测模拟试题含解析_第3页
江西省高安第二中学2023-2024学年高二上数学期末复习检测模拟试题含解析_第4页
江西省高安第二中学2023-2024学年高二上数学期末复习检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省高安第二中学2023-2024学年高二上数学期末复习检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,是水平放置的的直观图,其中,,分别与轴,轴平行,则()A.2 B.C.4 D.2.已知定义在上的函数的导函数为,且恒有,则下列不等式一定成立的是()A. B.C. D.3.若双曲线经过点,且它的两条渐近线方程是,则双曲线的方程是()A. B.C. D.4.已知数列中,,(),则等于()A. B.C. D.25.一物体做直线运动,其位移(单位:)与时间(单位:)的关系是,则该物体在时的瞬时速度是A. B.C. D.6.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块 B.3474块C.3402块 D.3339块7.某中学高一年级有200名学生,高二年级有260名学生,高三年级有340名学生,为了了解该校高中学生完成作业情况,现用分层抽样的方法抽取一个容量为40的样本,则高二年级抽取的人数为()A.10 B.13C.17 D.268.平行六面体的各棱长均相等,,,则异面直线与所成角的余弦值为()A. B.C. D.9.设是可导函数,当,则()A.2 B.C. D.10.计算复数:()A. B.C. D.11.已知命题p:∀x>2,x2>2x,命题q:∃x0∈R,ln(x02+1)<0,则下列命题是真命题的是()A.p∧ B.p∨C.p∧q D.p∨q12.已知双曲线的左右焦点分别为、,过作的一条渐近线的垂线,垂足为,若的面积为,则的渐近线方程为A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设变量x,y满足约束条件则的最大值为___________.14.已知曲线,①若,则是椭圆,其焦点在轴上;②若,则是圆,其半径为;③若,则是双曲线,其渐近线方程为;④若,,则是两条直线.以上四个命题,其中正确的序号为_________.15.已知函数的图象上有一点,则曲线在点处的切线方程为______.16.不等式的解集为,则________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的焦距为,点在椭圆上.过点的直线l交椭圆于A,B两点.(1)求该椭圆的方程;(2)若点P为直线上的动点,记直线PA,PM,PB的斜率分别为,,.求证:,,成等差数列.18.(12分)如图,四边形ABCD是正方形,四边形BEDF是菱形,平面平面.(1)证明:;(2)若,且平面平面BEDF,求平面ADE与平面CDF所成的二面角的正弦值.19.(12分)已知等比数列的前项和为,且,.(1)求的通项公式;(2)求.20.(12分)已如空间直角标系中,点都在平面内,求实数y的值21.(12分)已知椭圆,点在上,,且(1)求出直线所过定点的坐标;(不需要证明)(2)过A点作的垂线,垂足为,是否存在点,使得为定值?若存在,求出的值;若不存在,说明理由.22.(10分)在等差数列中,记为数列的前项和,已知:.(1)求数列的通项公式;(2)求使成立的的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】先确定是等腰直角三角形,求出,再确定原图的形状,进而求出.【详解】由题意可知是等腰直角三角形,,其原图形是,,,,则,故选:D.2、D【解析】构造函数,用导数判断函数单调性,即可求解.【详解】根据题意,令,其中,则,∵,∴,∴在上为单调递减函数,∴,即,,则错误;,即,则错误;,即,则错误;,即,则正确;故选:.3、A【解析】根据双曲线渐近线方程设出方程,再由其过的点即可求解.【详解】渐近线方程是,设双曲线方程为,又因为双曲线经过点,所以有,所以双曲线方程为,化为标准方程为.故选:A4、D【解析】由已知条件可得,,…,即是周期为3的数列,即可求.【详解】由题设,知:,,,…,∴是周期为3的数列,而的余数为1,∴.故选:D.5、A【解析】先对求导,然后将代入导数式,可得出该物体在时的瞬时速度【详解】对求导,得,,因此,该物体在时的瞬时速度为,故选A【点睛】本题考查瞬时速度的概念,考查导数与瞬时变化率之间的关系,考查计算能力,属于基础题6、C【解析】第n环天石心块数为,第一层共有n环,则是以9为首项,9为公差的等差数列,设为的前n项和,由题意可得,解方程即可得到n,进一步得到.【详解】设第n环天石心块数为,第一层共有n环,则是以9为首项,9为公差的等差数列,,设为的前n项和,则第一层、第二层、第三层的块数分别为,因为下层比中层多729块,所以,即即,解得,所以.故选:C【点晴】本题主要考查等差数列前n项和有关的计算问题,考查学生数学运算能力,是一道容易题.7、B【解析】计算出抽样比可得答案.【详解】该校高中学生共有名,所以高二年级抽取的人数名.故选:B.8、B【解析】利用基底向量表示出向量,,即可根据向量夹角公式求出【详解】如图所示:不妨设棱长为1,,,所以==,,,即,故异面直线与所成角的余弦值为故选:B注意事项:1.将答案写在答题卡上2.本卷共10小题,共80分.9、C【解析】由导数的定义可得,即可得答案【详解】根据题意,,故.故选:C10、D【解析】直接利用复数代数形式的乘除运算化简可得结论.【详解】故选:D.11、B【解析】取x=4,得出命题p是假命题,由对数的运算得出命题q是假命题,再判断选项.【详解】命题p:∀x>2,x2>2x,是假命题,例如取x=4,则42=24;命题q:∃x0∈R,ln(x02+1)<0,是假命题,∵∀x∈R,ln(x2+1)≥0.则下列命题是真命题的是.故选:B.12、D【解析】求得,根据的面积列方程,由此求得,进而求得双曲线的渐近线方程.【详解】依题意,双曲线的一条渐近线为,则,所以,所以,所以.所以双曲线渐近线方程为.故选:D【点睛】本小题主要考查双曲线渐近线的有关计算,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据线性约束条件画出可行域,把目标函数转化为,然后根据直线在轴上截距最大时即可求出答案.【详解】画出可行域,如图,由,得,由图可知,当直线过点时,有最大值,且最大值为.故答案为:.14、①③④【解析】通过m,n的取值判断焦点坐标所在轴,判断①,求出圆的半径判断②;通过求解双曲线的渐近线方程,判断③;利用,,判断曲线是否是两条直线判断④【详解】解:①若,则,因为方程化为:,焦点坐标在y轴,所以①正确;②若,则C是圆,其半径为:,不一定是,所以②不正确;③若,则C是双曲线,其渐近线方程为,化简可得,所以③正确;④若,,方程化为,则C是两条直线,所以④正确;故答案为:①③④15、【解析】利用导数求得为增函数,根据,求得,进而求得,得出即在点处的切线的斜率,再利用直线的点斜式方程,即可求解【详解】由题意,点在曲线上,可得,又由函数,则,所以函数在上为增函数,且,所以,因为,所以,即在点处的切线的斜率为2,所以曲线在点的切线方程为,即.故答案为:【点睛】本题主要考查了利用导数求解曲线在某点处的切线方程,其中解答中熟记导数的几何意义,以及导数的运算公式,结合直线的点斜式方程是解答的关键,着重考查了推理与运算能力16、【解析】由一元二次方程与一元二次不等式之间的关系可知,方程的两根是,所以因此.考点:一元二次方程与一元二次不等式之间的关系.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解析】(1)根据焦点坐标及椭圆上的点,利用椭圆的定义求出a,再由关系求b,即可得解;(2)分直线斜率存在与不存在两种情况讨论,利用斜率公式计算出,根据等差中项计算,即可证明成等差数列.【小问1详解】∵椭圆的焦距,椭圆的两焦点坐标分别为,又点在椭圆上,,即.该椭圆方程为.【小问2详解】设.当直线l的斜率为0时,其方程为,代入,可得.不妨取,则,成等差数列.当直线l的斜率不为0时,设其方程为,由,消去x得.即,成等差数列,综上可得,,成等差数列.18、(1)证明见解析;(2).【解析】(1)连接交于点,连接,要证明,只需证明平面即可;(2)以D为原点建系,分别求出平面与平面的法向量,再利用向量的夹角公式计算即可得到答案.【详解】(1)证明:如图,连接交于点,连接四边形为正方形,,且为的中点又四边形为菱形,平面平面又平面OAE.(2)解:如图,建立空间直角坐标系,不妨设,则,,则由(1)得又平面平面,平面平面,平面ABCD,故,同理,设为平面的法向量,为平面的法向量,则故可取,同理故可取,所以设平面与平面所成的二面角为,则,所以平面与平面所成的二面角的正弦值为19、(1)(2)【解析】(1)设的公比为,根据题意求得的值,即可求得的通项公式;(2)由(1)求得,得到,利用等比数列的求和公式,即可求解.【小问1详解】解:设的公比为,因为,,则,又因为,解得,所以的通项公式为.【小问2详解】解:由,可得,则,所以.20、【解析】方法一:根据平面向量基本定理即可解出;方法二:先求出平面的一个法向量,再根据即可求出【详解】方法一:,由题意知A,B,C,P四点共面,则存在实数,满足∵,∴∴,而,∴方法二:,设平面的一个法向量为,则,∴取,则,∵,∴,解得21、(1)(2)存在,【解析】(1)分斜率存在和斜率不存在两种情况,当斜率存在时,设出直线方程,联立椭圆方程,利用韦达定理列出方程,求出定点坐标,当斜率不存在时,设出点的坐标进行求解;(2)结合第一问的定点坐标,结合直角三角形斜边中线得到存在点,使得为定值,求出结果.【小问1详解】设点,若直线斜率存在时,设直线的方程为:,代入椭圆方程消去并整理得:,可得,因为,所以,即,根据,代入整理可得:,所以,整理化简得:,因为不在直线上,所以,故,于是的方程为,所以直线过定点直线过定点.当直线的斜率不存在时,可得,由得:,得,结合可得:,解得:或(舍).此时直线过点【小问2详解】由(1)可知因为,取中点,则此时,【点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论