江苏省如东中学、栟茶中学2024届高二上数学期末质量跟踪监视试题含解析_第1页
江苏省如东中学、栟茶中学2024届高二上数学期末质量跟踪监视试题含解析_第2页
江苏省如东中学、栟茶中学2024届高二上数学期末质量跟踪监视试题含解析_第3页
江苏省如东中学、栟茶中学2024届高二上数学期末质量跟踪监视试题含解析_第4页
江苏省如东中学、栟茶中学2024届高二上数学期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省如东中学、栟茶中学2024届高二上数学期末质量跟踪监视试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直线l:的倾斜角为()A. B.C. D.2.若x,y满足约束条件,则的最大值为()A.1 B.0C.−1 D.−33.已知函数在处取得极值,则的极大值为()A. B.C. D.4.已知函数,则()A.0 B.1C.2 D.5.若双曲线的一条渐近线方程为.则()A. B.C.2 D.46.等差数列中,已知,则()A.36 B.27C.18 D.97.如图,我市某地一拱桥垂直轴截面是抛物线,已知水利人员在某个时刻测得水面宽,则此时刻拱桥的最高点到水面的距离为()A. B.C. D.8.已知直线与椭圆:()相交于,两点,且线段的中点在直线:上,则椭圆的离心率为()A. B.C. D.9.已知椭圆的左焦点是,右焦点是,点P在椭圆上,如果线段的中点在y轴上,那么()A.3:5 B.3:4C.5:3 D.4:310.设双曲线:(,)的右顶点为,右焦点为,为双曲线在第二象限上的点,直线交双曲线于另一个点(为坐标原点),若直线平分线段,则双曲线的离心率为()A. B.C. D.11.围棋起源于中国,据先秦典籍世本记载:“尧造围棋,丹朱善之”,至今已有四千多年历史.围棋不仅能抒发意境、陶冶情操、修身养性、生慧增智,而且还与天象易理、兵法策略、治国安邦等相关联,蕴含着中华文化的丰富内涵.在某次国际围棋比赛中,规定甲与乙对阵,丙与丁对阵,两场比赛的胜者争夺冠军,根据以往战绩,他们之间相互获胜的概率如下:甲乙丙丁甲获胜概率乙获胜概率丙获胜概率丁获胜概率则甲最终获得冠军的概率是()A.0.165 B.0.24C.0.275 D.0.3612.直线且的倾斜角为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知偶函数部分图象如图所示,且,则不等式的解集为______.14.展开式中的系数是___________.15.求值______.16.若椭圆和圆(c为椭圆的半焦距)有四个不同的交点,则椭圆的离心率的取值范围是_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知双曲线C:(,)的一条渐近线的方程为,双曲线C的右焦点为,双曲线C的左、右顶点分别为A,B(1)求双曲线C的方程;(2)过右焦点F的直线l与双曲线C的右支交于P,Q两点(点P在x轴的上方),直线AP的斜率为,直线BQ的斜率为,证明:为定值18.(12分)已知各项均为正数的等比数列前项和为,且,.(1)求数列的通项公式;(2)若,求19.(12分)在平面直角坐标系xOy中,已知椭圆C:的焦距为4,且过点.(1)求椭圆C的方程;(2)设椭圆C的上顶点为B,右焦点为F,直线l与椭圆交于M,N两点,问是否存在直线l,使得F为的垂心(高的交点),若存在,求出直线l的方程:若不存在,请说明理由.20.(12分)已知等差数列的前项和为,,且.(1)求数列的通项公式;(2)设数列的前项和为,证明:.21.(12分)已知动圆过点,且与直线:相切(1)求动圆圆心的轨迹方程;(2)若过点且斜率的直线与圆心的轨迹交于两点,求线段的长度22.(10分)2021年7月25日,在东京奥运会自行车公路赛中,奥地利数学女博士安娜·基秣崔天以3小时52分45秒的成绩获得冠军,震惊了世界!广大网友惊呼“学好数理化,走遍天下都不怕”.某市对中学生的体能测试成绩与数学测试成绩进行分析,并从中随机抽取了200人进行抽样分析,得到下表(单位:人):体能一般体能优秀合计数学一般5050100数学优秀4060100合计90110200(1)根据以上数据,能否在犯错误的概率不超过0.10的前提下认为“体能优秀”还是“体能一般”与数学成绩有关?(结果精确到小数点后两位)(2)①现从抽取的数学优秀的人中,按“体能优秀”与“体能一般”这两类进行分层抽样抽取10人,然后,再从这10人中随机选出4人,求其中至少有2人是“体能优秀”的概率;②将频率视为概率,以样本估计总体,从该市中学生中随机抽取10人参加座谈会,记其中“体能优秀”的人数为X,求X的数学期望和方差参考公式:,其中参考数据:0.150.100.050.250.0102.0722.7063.8415.0246.635

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】先求得直线的斜率,由此求得倾斜角.【详解】依题意,直线的斜率为,倾斜角的范围为,则倾斜角为.故选:D.2、B【解析】先画出可行域,由,得,作出直线,过点时,取得最大值,求出点的坐标代入目标函数中可得答案【详解】不等式组表示的可行域如图所示,由,得,作出直线,过点时,取得最大值,由,得,即,所以的最大值为,故选:B3、B【解析】首先求出函数的导函数,依题意可得,即可求出参数的值,从而得到函数解析式,再根据导函数得到函数单调性,即可求出函数的极值点,从而求出函数的极大值;【详解】解:因为,所以,依题意可得,即,解得,所以定义域为,且,令,解得或,令解得,即在和上单调递增,在上单调递减,即在处取得极大值,在处取得极小值,所以;故选:B4、C【解析】对函数f(x)求导即可求得结果.【详解】函数,则,,故选C【点睛】本题考查正弦函数的导数的应用,属于简单题.5、C【解析】求出渐近线方程为,列出方程求出.【详解】双曲线的渐近线方程为,因为,所以,所以.故选:C6、B【解析】直接利用等差数列的求和公式及等差数列的性质求解.【详解】解:由题得.故选:B7、D【解析】代入计算即可.【详解】设B点的坐标为,由抛物线方程得,则此时刻拱桥的最高点到水面的距离为2米.故选:D8、A【解析】将直线代入椭圆方程整理得关于的方程,运用韦达定理,求出中点坐标,再由条件得到,再由,,的关系和离心率公式,即可求出离心率.【详解】解:将直线代入椭圆方程得,,即,设,,,,则,即中点的横坐标是,纵坐标是,由于线段的中点在直线上,则,又,则,,即椭圆的离心率为.故选:A9、A【解析】求出椭圆的焦点坐标,再根据点在椭圆上,线段的中点在轴上,求得点坐标,进而计算,从而求解.【详解】由椭圆方程可得:,设点坐标为,线段的中点为,因为线段中点在轴上,所以,即,代入椭圆方程得或,不妨取,则,所以,故选:A.10、A【解析】由给定条件写出点A,F坐标,设出点B的坐标,求出线段FC的中点坐标,由三点共线列式计算即得.【详解】令双曲线的半焦距为c,点,设,由双曲线对称性得,线段FC的中点,因直线平分线段,即点D,A,B共线,于是有,即,即,离心率.故选:A11、B【解析】先求出甲第一轮胜出的概率,再求出甲第二轮胜出的概率,即可得出结果.【详解】甲最终获得冠军的概率,故选:B.12、C【解析】由直线方程可知其斜率,根据斜率和倾斜角关系可得结果.【详解】直线方程可化为:,直线的斜率,直线的倾斜角为.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由函数的图象得出当时,,再由函数是偶函数,其图象的性质,即可得出答案.【详解】是偶函数,且,所以,由图象得当时,.又函数是偶函数,其图像关于y轴对称,当时,,所以不等式的解集为.故答案为:.14、【解析】根据二项展开式的通项公式,可知展开式中含的项,以及展开式中含的项,再根据组合数的运算即可求出结果.【详解】解:由题意可得,展开式中含的项为,而展开式中含的项为,所以的系数为.故答案为:.15、【解析】将原式子变形为:,将代入变形后的式子得到结果即可.【详解】将代入变形后的式子得到结果为故答案为:16、【解析】当圆的直径介于椭圆长轴和短轴长度范围之间时,椭圆和圆有四个不同的焦点,由此列不等式,解不等式求得椭圆离心率的取值范围.【详解】由于椭圆和圆有四个焦点,故圆的直径介于椭圆长轴和短轴长度范围之间,即.由得,两边平方并化简得,即①.由得,两边平方并化简得,解得②.由①②得.故填.【点睛】本小题主要考查椭圆和圆的位置关系,考查椭圆离心率取值范围的求法,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解析】(1)由题可得,,即求;(2)由题可设直线方程与双曲线方程联立,利用韦达定理法即证【小问1详解】由题意可知在双曲线C中,,,,解得所以双曲线C的方程为;【小问2详解】证法一:由题可知,设直线,,,由,得,则,,∴,,;当直线的斜率不存在时,,此时.综上,为定值证法二:设直线PQ方程为,,,联立得整理得,由过右焦点F的直线l与双曲线C的右支交于P,Q两点,则解得,,,,由双曲线方程可得,,,,∵,∴,,证法三:设直线PQ方程为,,,联立得整理得,由过右焦点F的直线l与双曲线C的右支交于P,Q两点,则解得,∴,,由双曲线方程可得,,则,所以,,,∴为定值18、(1)(2)9【解析】(1)根据题意列出关于等比数列首项、公比的方程组即可解决;(2)利用等比数列的前项和的公式,解方程即可解决.【小问1详解】设各项均为正数的等比数列首项为,公比为则有,解之得则等比数列的通项公式.【小问2详解】由,可得19、(1)(2)存在:【解析】(1)根据题意,列出关于a,b,c的关系,计算求值,即可得答案.(2)由(1)可得B、F点坐标,可得直线BF的斜率,根据F为垂心,可得,可得直线l的斜率,设出直线l的方程,与椭圆联立,根据韦达定理,结合垂心的性质,列式求解,即可得答案.【小问1详解】因为焦距为4,所以,即,又过点,所以,又,联立求得,所以椭圆C的方程为【小问2详解】由(1)可得,所以,因为F为垂心,直线BF与直线l垂直,所以,则,即直线l的斜率为1,设直线l的方程为,,与椭圆联立得,,所以,因为F为垂心,所以直线BN与直线MF垂直,所以,即,又,所以,即,所以,解得或,由,解得,又时,直线l过点B,不符合题意,所以,所以存在直线l:,满足题意.20、(1);(2)证明见解析.【解析】(1)根据等差数列的性质及题干条件,可求得,代入公式,即可求得数列的通项公式;(2)由(1)可得,利用裂项相消求和法,即可求得,即可得证.【详解】解:(1)设数列的公差为,在中,令,得,即,故①.由得,所以②.由①②解得,.所以数列的通项公式为:.(2)由(1)可得,所以,故,所以.因为,所以.【点睛】数列求和的常见方法:(1)倒序相加法:如果一个数列的前n项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n项和可以用倒序相加法;(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n项和可以两两结合求解,则称之为并项求和,形如类型,可采用两项合并求解.21、(1);(2).【解析】(1)由题意分析圆心符合抛物线定义,然后求轨迹方程;(2)直接联立方程组,求出弦长.【详解】解:(1)圆过点,且与直线相切点到直线的距离等于由抛物线定义可知点的轨迹是以为焦点、以为准线的抛物线,依题意,设点的轨迹方程为,则,解得,所以,动圆圆心的轨迹方程是(2)依题意可知直线,设联立,得,则,所以,线段的长度为【点睛】(1)待定系数法、代入法可以求二次曲线的标准方程;(2)“设而不求”是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题.22、(1)不能,理由见解析;(2)①,②,【解析】(1)运用公式求出,比较得出结论

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论