版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林市重点中学2024届高二上数学期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直线恒过定点()A. B.C. D.2.已知方程表示焦点在轴上的椭圆,则实数的取值范围是()A. B.C. D.3.“x>1”是“x>0”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.某地为应对极端天气抢险救灾,需调用A,B两种卡车,其中A型卡车x辆,B型卡车y辆,以备不时之需,若x和y满足约束条件则最多需调用卡车的数量为()A.7 B.9C.13 D.145.执行如图所示的程序框图,则输出S的值是()A. B.C. D.6.双曲线(,)的一条渐近线的倾斜角为,则离心率为()A. B.C.2 D.47.已知中,内角所对的边分别,若,,,则()A. B.C. D.8.设是等差数列的前n项和,若,,则()A.26 B.-7C.-10 D.-139.已知命题:,;命题:,.则下列命题中为真命题的是()A. B.C. D.10.已知函数,则等于()A.0 B.2C. D.11.某一电子集成块有三个元件a,b,c并联构成,三个元件是否有故障相互独立.已知至少1个元件正常工作,该集成块就能正常运行.若每个元件能正常工作的概率均为,则在该集成块能够正常工作的情况下,有且仅有一个元件出现故障的概率为()A. B.C. D.12.圆:与圆:的位置关系是()A.内切 B.外切C.相交 D.相离二、填空题:本题共4小题,每小题5分,共20分。13.知函数,若函数有两个不同的零点,则实数的取值范围为_____________.14.,利用课本中推导等差数列前项和的公式的方法,可求得______15.已知,若三个数成等差数列,则_________;若三个数成等比数列,则__________16.设函数是函数的导函数,已知,且,则使得成立的x的取值范围是_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)命题存在,使得;命题对任意的,都有(1)若命题p为真时,求实数a的取值范围;若命题q为假时,求实数a的取值范围;(2)如果命题为真命题,命题为假命题,求实数a的取值范围18.(12分)已知圆:,,为圆上的动点,若线段的垂直平分线交于点.(1)求动点的轨迹的方程;(2)已知为上一点,过作斜率互为相反数且不为0的两条直线,分别交曲线于,,求的取值范围.19.(12分)设数列是公比为q的等比数列,其前n项和为(1)若,,求数列的前n项和;(2)若,,成等差数列,求q的值并证明:存在互不相同的正整数m,n,p,使得,,成等差数列;(3)若存在正整数,使得数列,,…,在删去以后按原来的顺序所得到的数列是等差数列,求所有数对所构成的集合,20.(12分)2021年国庆期间,某电器商场为了促销,给出了两种优惠方案,顾客只能选择其中的一种,方案一:每消费满8千元,可减8百元.方案二:消费金额超过8千元(含8千元),可抽取小球三次,其规则是依次从装有2个红色小球、2个黄色小球的一号箱子,装有2个红色小球、2个黄色小球的二号箱子,装有1个红色小球、3个黄色小球的三号箱子各抽一个小球(这些小球除颜色外完全相同),其优惠情况为:若抽出3个红色小球则打6折;若抽出2个红色小球则打7折;若抽出1个红色小球则打8折;若没有抽出红色小球则不打折.(1)若有两名顾客恰好消费8千元,他们都选中第二方案,求至少有一名顾客比选择方案一更优惠的概率;(2)若你朋友在该商场消费了1万元,请用所学知识帮助你朋友分析一下应选择哪种付款方案.21.(12分)已知椭圆C:的离心率为,点和点都在椭圆C上,直线PA交x轴于点M(1)求椭圆C的方程,并求点M的坐标(用m,n表示);(2)设O为原点,点B与点A关于x轴对称,直线PB交x轴于点N,问:y轴上是否存在点Q(不与O重合),使得?若存在,求点Q的坐标,若不存在,说明理由22.(10分)如图,从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:(1)[79.5,89.5)这一组的频数、频率分别是多少?(2)估计这次环保知识竞赛的众数、中位数、平均数是多少?
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】将直线方程变形得,再根据方程即可得答案.【详解】解:由得到:,∴直线恒过定点故选:A2、D【解析】根据已知条件可得出关于实数的不等式组,由此可解得实数的取值范围.【详解】因为方程表示焦点在轴上的椭圆,则,解得.故选:D.3、A【解析】根据充分、必要条件间的推出关系,判断“x>1”与“x>0”的关系.【详解】“x>1”,则“x>0”,反之不成立.∴“x>1”是“x>0”的充分不必要条件.故选:A.4、B【解析】画出约束条件的可行域,利用目标函数的几何意义即可求解【详解】设调用卡车的数量为z,则,其中x和y满足约束条件,作出可行域如图所示:当目标函数经过时,纵截距最大,最大.故选:B5、C【解析】按照程序框图的流程进行计算.【详解】,故输出S的值为.故选:C6、C【解析】根据双曲线方程写出渐近线方程,得出,进而可求出双曲线的离心率.【详解】因为双曲线的渐近线方程为,又其中一条渐近线的倾斜角为,所以,则,所以该双曲线离心率为.故选:C.7、B【解析】利用正弦定理可直接求得结果.【详解】在中,由正弦定理得:.故选:B.8、C【解析】直接利用等差数列通项和求和公式计算得到答案.【详解】,,解得,故.故选:C.9、C【解析】利用基本不等式判断命题的真假,由不等式性质判断命题的真假,进而确定它们所构成的复合命题的真假即可.【详解】由,当且仅当时等号成立,故不存在使,所以命题为假命题,而命题为真命题,则为真,为假,故为假,为假,为真,为假.故选:C10、D【解析】先通过诱导公式将函数化简,进而求出导函数,然后算出答案.【详解】由题意,,故选:D.11、A【解析】记事件为该集成块能够正常工作,事件为仅有一个元件出现故障,进而结合对立事件的概率公式得,再根据条件概率公式求解即可.【详解】解:记事件为该集成块能够正常工作,事件为仅有一个元件出现故障,则为该集成块不能正常工作,所以,,所以故选:A12、A【解析】先计算两圆心之间的距离,判断距离和半径和、半径差之间的关系即可.【详解】圆圆心,半径,圆圆心,半径,两圆心之间的距离,故两圆内切.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据分段函数的性质,结合幂函数、一次函数的单调性判断零点的分布,进而求m的范围.【详解】由解析式知:在上为增函数且,在上,时为单调函数,时无零点,故要使有两个不同的零点,即两侧各有一个零点,所以在上必递减且,则,可得.故答案为:14、2020【解析】先证得,利用倒序相加法求得表达式值.【详解】解:由题意可知,令S=则S=两式相加得,故填:【点睛】本题考查借助倒序相加求函数值的和,属于中档题,解题关键是找到的规律15、①.4②.【解析】由等差中项与等比中项计算即可.【详解】若a,b,c三个数成等差数列.所以.若a,b,c三个数成等比数列.所以故答案为:4,.16、【解析】构造函数利用导数研究单调性,即可得到答案;【详解】,令,,单调递减,且,,x的取值范围是,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)p为真时或,q为假时;(2){或}.【解析】(1)p为真应用判别式求参数范围;q为真,根据恒成立求参数范围,再判断q为假对应的参数范围.(2)由题设易得p、q一真一假,讨论p、q的真假,结合(1)的结果求a的取值范围【小问1详解】若p真,则有实数根,∴,解得或若q为真,则,即故q为假时,实数a的取值范围为【小问2详解】∵命题真命题,命题为假命题,∴p,q一真一假,当p真q假时,,可得当p假q真时,,可得综上,实数a取值范围为或.18、(1)动点的轨迹的方程为;(2)的取值范围.【解析】(1)由条件线段的垂直平分线交于点可得,由此可得,根据椭圆的定义可得点的轨迹为椭圆,结合椭圆的标准方程求动点的轨迹的方程;(2)由(1)可求点坐标,设直线的方程为,,联立方程组化简可得,,由直线,的斜率互为相反数可得的值,再由弦长公式求的长,再求其范围.【小问1详解】由题知故.即即在以为焦点且长轴为4的椭圆上则动点的轨迹的方程为:;【小问2详解】故即.设:,联立(*),,∴,,又则:即若,则过,不符合题意故,∴,故19、(1)(2),证明见解析.(3)不存在,【解析】(1)数列为首项为公差为的等差数列,利用等差数列的求和公式即可得出结果;(2),,成等差数列,则+=2,根据等比数列求和公式计算可解得,进而计算可得,即可判断结果;(3)由题意列出,,…,,,,,,…,在删去以后,按原来的顺序所得到的数列是等差数列,则,解方程组可得无解,则所有数对所构成的集合为.【小问1详解】,,数列是公比为q的等比数列,,数列为,数列为首项为公差为的等差数列,数列的前n项和.【小问2详解】,,成等差数列,+=2,当时,+=,2,不符题意舍去,当时,.,即,,,(舍)或即,存在互不相同的正整数,使得,,成等差数列,,,.【小问3详解】由题意列出,,…,,,,,,…,在删去以后,按原来的顺序所得到的数列是等差数列,则,,即,解得:方程组无解.即符合条件的不存在,所有数对所构成的集合为.20、(1)(2)选择方案二更划算【解析】(1)要使方案二比方案一优惠,则需要抽出至少一个红球,求出没有抽出红色小球的概率,再根据对立事件的概率公式即可得出答案;(2)若选择方案一,则需付款(元),若选择方案二,设付款金额为元,则可取6000,7000,8000,10000,求出对应概率,从而可求得的期望,在比较的期望与9200的大小即可得出结论.【小问1详解】解:根据题意得要使方案二比方案一优惠,则需要抽出至少一个红球,设没有抽出红色小球为事件,则,所以所求概率;【小问2详解】解:若选择方案一,则需付款(元),若选择方案二,设付款金额为元,则可取6000,7000,8000,10000,,,,,故的分布列为X60007000800010000P所以(元),因为,所以选择方案二更划算.21、(1),;(2)存在或,使得,理由见解析.【解析】(1)根据离心率,及求出,,进而得到椭圆方程及用m,n表示点M的坐标;(2)假设存在,根据得到,表达出点坐标,得到,结合得到,从而求出答案.【小问1详解】由离心率可知:,又,,解得:,,故椭圆C:,直线PA为:,令得:,所以;【小问2详解】存在或,使得,理由如下:假设,使得,则,其中,直线:,令得:,则,,解得:,其中,故,所以,所以或22、(1)0.25,15;(2)众数为74.5,中位数为72.8,平均分为70.5.【解析】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 代替单位收款的委托书
- 2024版纺织企业环保协议合同3篇
- 二零二四年云计算服务合同标的详细描述
- 购买股票合同范本
- 二零二四年度网络安全服务合同主要条款
- 《西柏坡精神及其当代价值研究》
- 二零二四年电子零件供应链运输合同
- 新版执业药师聘用合同书完整版3篇
- 中学家长会发言稿家长发言稿
- 学校艺术项目的可持续发展计划
- 2023-2024学年上海市黄浦区八年级(上)期中数学试卷(含解析)
- IATF16949第五版DFMEA管理程序+潜在失效模式及后果分析程序
- 中药对妇科疾病的作用研究
- 长沙市长郡双语实验学校人教版七年级上册期中生物期中试卷及答案
- DB63-T 241-2021 草地毒害综合治理技术规范
- 高考文言通假字汇总
- “治未病”思想与脾胃病的防治
- 项目监理人员配置标准
- 磷酸二氢钾的安全技术说明书
- 新就业形态劳动者群体现状及涉稳风险调研报告
- (高级)信息通信网络运行管理员技能鉴定考试题库(附答案)
评论
0/150
提交评论