版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省四地七校考试联盟2023-2024学年高二上数学期末学业水平测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设函数在R上可导,则()A. B.C. D.以上都不对2.命题:“,”的否定是()A., B.,C., D.,3.设,则曲线在点处的切线的倾斜角是()A. B.C. D.4.已知直线m经过,两点,则直线m的斜率为()A.-2 B.C. D.25.若数列为等比数列,且,,则()A.8 B.16C.32 D.646.设异面直线、的方向向量分别为,,则异面直线与所成角的大小为()A. B.C. D.7.已知集合M={0,x},N={1,2},若M∩N={2},则M∪N=()A.{0,x,1,2} B.{2,0,1,2}C.{0,1,2} D.不能确定8.经过点A(0,-3)且斜率为2的直线方程为()A. B.C. D.9.圆()上点到直线的最小距离为1,则A.4 B.3C.2 D.110.设为抛物线焦点,直线,点为上任意一点,过点作于,则()A.3 B.4C.2 D.不能确定11.已知函数,则()A. B.0C. D.112.抛物线的焦点为F,准线为l,点P是准线l上的动点,若点A在抛物线C上,且,则(O为坐标原点)的最小值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,,若x,a,b,y成等比数列,x,c,d,y成等差数列,则的最小值为_____________.14.方程表示双曲线,则实数k的取值范围是___________.15.设x,y满足约束条件则的最大值为________16.六面体的所有棱长都为2,底面ABCD是正方形,AC与BD的交点是O,若,则___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,已知三棱柱的侧棱与底面垂直,,,和分别是和的中点,点在直线上,且.(1)证明:无论取何值,总有;(2)是否存在点,使得平面与平面所成角为?若存在,试确定点的位置;若不存在,请说明理由.18.(12分)已知椭圆的左、右焦点分别是,,离心率为,过且垂直于x轴的直线被椭圆C截得的线段长为1(1)求椭圆C方程;(2)设点P在直线上,过点P的两条直线分别交曲线C于A,B两点和M,N两点,且,求直线AB的斜率与直线MN的斜率之和19.(12分)在中,,,请再从条件①、条件②这两个条件中选择一个作为已知,然后解答下列问题.(1)求角的大小;(2)求的面积.条件①:;条件②:.20.(12分)已知椭圆的离心率为,右焦点为,斜率为1的直线与椭圆交于两点,以为底边作等腰三角形,顶点为.(1)求椭圆的方程;(2)求的面积.21.(12分)已知数列的首项,,,.(1)证明:为等比数列;(2)求数列的前项和22.(10分)如图,在直三棱柱ABC-A1B1C1中,底面ABC是等边三角形,D是AC的中点.(1)证明:AB1//面BC1D;(2)若AA1=AB,求二面角B1-AC-C1的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据极限的定义计算【详解】由题意故选:B2、D【解析】利用全称量词命题的否定可得出结论.【详解】由全称量词命题的否定可知,命题“,”的否定是“,”.故选:D.3、C【解析】根据导数的概念可得,再利用导数的几何意义即可求解.【详解】因为,所以,则曲线在点处的切线斜率为,故所求切线的倾斜角为.故选:C4、A【解析】根据斜率公式求得正确答案.【详解】直线的斜率为:.故选:A5、B【解析】设等比数列的公比为,根据等比数列的通项公式得到,即可求出,再根据计算可得;【详解】解:设等比数列公比为,因为、,所以,所以;故选:B6、C【解析】利用空间向量夹角的公式直接求解.【详解】,,,.由异面直线所成角的范围为,故异面直线与所成的角为.故选:C7、C【解析】集合M={0,x},N={1,2},若M∩N={2},则.所以.故选C.点睛:集合的交集即为由两个集合的公共元素组成的集合,集合的并集即由两集合的所有元素组成.8、A【解析】直接代入点斜式方程求解即可详解】因为直线经过点且斜率为2,所以直线的方程为,即,故选:9、A【解析】根据题意可得,圆心到直线的距离等于,即,求得,所以A选项是正确的.【点睛】判断直线与圆的位置关系的常见方法:(1)几何法:利用d与r的关系.(2)代数法:联立方程之后利用判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.上述方法中常用的是几何法,点与圆的位置关系法适用于动直线问题10、A【解析】由抛物线方程求出准线方程,由题意可得,由抛物线的定义可得,即可求解.【详解】由可得,准线为,设,由抛物线的定义可得,因为过点作于,可得,所以,故选:A.11、B【解析】先求导,再代入求值.详解】,所以.故选:B12、D【解析】依题意得点坐标,作点关于的对称点,则,求即为最小值【详解】如图所示:作点关于的对称点,连接,设点,不妨设,由题意知,直线l方程为,则,得所以,得,所以由,当三点共线时取等号,又所以最小值为故选:D二、填空题:本题共4小题,每小题5分,共20分。13、4【解析】根据等差数列和等比数列性质把用表示,然后由基本不等式得最小值【详解】由题意,,所以,当且仅当时等号成立故答案为:414、【解析】由题可得,即求.【详解】∵方程表示双曲线,∴,∴.故答案为:.15、1【解析】先作出可行域,由,得,作出直线,向下平移过点时,取得最大值,求出点坐标代入目标函数中可得答案【详解】作出可行域如图(图中阴影部分),由,得,作出直线,向下平移过点时,取得最大值,由,得,即,所以的最大值为,故答案为:116、【解析】结合空间向量运算求得.【详解】,.所以.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)不存在,理由见解析.【解析】(1)以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,计算得出,即可得出结论;(2)计算出平面的一个法向量,利用空间向量法可得出关于的方程,即可得出结论.【详解】(1)因为平面,,以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,则、、、,,,所以,,则,因此,无论取何值,总有;(2),设平面的法向量为,则,取,则,,所以,平面的一个法向量为,易知平面的一个法向量为,由题意可得,整理可得,,此方程无解,因此,不存在点,使得平面与平面所成的角为.18、(1)(2)0【解析】(1)由条件得和,再结合可求解;(2)设直线AB的方程为:,与椭圆联立,得到,同理得,再根据题中的条件化简整理可求解.【小问1详解】因为椭圆的离心率为,所以,所以①又因为过且垂直于x轴的直线被椭圆C截得的线段长为1,所以②,由①②可知,所以,,所以椭圆C的方程为【小问2详解】因为点P在直线上,所以设点,由题可知,直线AB的斜率与直线MN的斜率都存在所以直线AB的方程为:,即,直线MN的方程为:,即,设,,,,所以,消去y可得,,整理可得,且所以,,又因为,,所以,同理可得,又因为,所以,又因为,,,都是长度,所以,所以,整理可得,又因为,所以,所以直线AB的斜率与直线MN的斜率之和为019、(1)条件选择见解析,(2)【解析】(1)选①,利用余弦定理求出的值,结合角的取值范围,即可求得角的值;选②,利用余弦定理可求出的值,并利用余弦定理求出的值,结合角的取值范围,即可求得角的值;(2)利用三角形的面积公式可求得的面积.【小问1详解】解:选①,,由余弦定理可得,,所以,.选②,,整理可得,,解得,由余弦定理可得,,所以,.【小问2详解】解:由三角形的面积公式可得.20、(1)(2)【解析】(1)根据椭圆的简单几何性质知,又,写出椭圆的方程;(2)先斜截式设出直线,联立方程组,根据直线与圆锥曲线的位置关系,可得出中点为的坐标,再根据△为等腰三角形知,从而得的斜率为,求出,写出:,并计算,再根据点到直线距离公式求高,即可计算出面积【详解】(1)由已知得,,解得,又,所以椭圆的方程为(2)设直线的方程为,由得,①设、的坐标分别为,(),中点为,则,,因为是等腰△的底边,所以所以的斜率为,解得,此时方程①为解得,,所以,,所以,此时,点到直线:距离,所以△的面积考点:1、椭圆的简单几何性质;2、直线和椭圆的位置关系;3、椭圆的标准方程;4、点到直线的距离.【思路点晴】本题主要考查的是椭圆的方程,椭圆的简单几何性质,直线与椭圆的位置关系,点到直线的距离,属于难题.解决本类问题时,注意使用椭圆的几何性质,求得椭圆的标准方程;求三角形的面积需要求出底和高,在求解过程中要充分利用三角形是等腰三角形,进而知道定点与弦中点的连线垂直,这是解决问题的关键21、(1)证明见解析(2)【解析】(1)利用等比数列的定义即可证明.(2)利用错位相减法即可求解.【小问1详解】当时,,所以:数列是公比为3的等比数列;【小问2详解】由(1)知,数列是以3为首项,以3为公比的等比数列,所以:,所以:,,所以,①所以,②①②可得.22、(1)证明见解析(2)【解析】(1),连接,证明,再根据线面平行的判定定理即可得证;(2)说明平面,取的中点F,连接,以D为原点,分别以的方向为x,y,z轴的正方向,建立如图所示的空间直角坐标系,利用向量法即可得出答案.【小问1详解】证明:记,连接,由直棱柱的性质可知四边形是矩
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大班数学活动教案:测量
- 人教版九年级物理全册 14.2 热机的效率 教案
- 3.3 大气热力环流 课件 高一上学期 地理 湘教版(2019)必修一
- 中班语言教案:小动物开店
- 打端子新员工入职培训
- 1.2.2 时差课件高中地理人教版(2019)选择性必修一
- 大班上学期美术教案:我自己
- 英语机构教学培训
- 第十一章 小粒子与大宇宙(解析版)
- 肺气肿的护理措施
- 传统节日腊八飘香腊八节风俗习惯科普PPT
- 国家开放大学中级财务会计二形成性考核作业参考答案
- DB37-T 4328-2021 建筑消防设施维护保养技术规程
- 江苏省南京市联合体2022-2023九年级初三上学期物理期中试卷+答案
- 充电桩项目安装工程施工组织设计
- 农作物种子检验规程标准
- 专业海钓服务平台项目商业计划书
- 六年级劳动教育5.基地小专家(扦插)(课件)
- 配送部管理制度
- 脑卒中溶栓相关知识考核试卷(试题与答案)
- DB32-T 3129-2016适合机械化作业的单体钢架塑料大棚 技术规范-(高清现行)
评论
0/150
提交评论