版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省长春市六中2023-2024学年数学高二上期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f(x)g(x)+f(x)g(x)<0且f(﹣1)=0则不等式f(x)g(x)<0的解集为A.(﹣1,0)∪(1,+∞) B.(﹣1,0)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞) D.(﹣∞,﹣1)∪(0,1)2.古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:“平面内到两个定点A,B的距离之比为定值的点的轨迹是圆”.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.在平面直角坐标系中,,点P满足,设点P的轨迹为C,下列结论正确的是()A.C的方程为B.当A,B,P三点不共线时,面积的最大值为24C.当A,B,P三点不共线时,射线是的角平分线D.在C上存在点M,使得3.在的展开式中,的系数为()A. B.5C. D.104.一组样本数据:,,,,,由最小二乘法求得线性回归方程为,若,则实数m的值为()A.5 B.6C.7 D.85.已知数列中,,则()A.2 B.C. D.6.下列事件:①连续两次抛掷同一个骰子,两次都出现2点;②某人买彩票中奖;③从集合中任取两个不同元素,它们的和大于2;④在标准大气压下,水加热到90℃时会沸腾.其中是随机事件的个数是()A.1 B.2C.3 D.47.已知椭圆的离心率为,左、右焦点分别为、,过作轴的平行线交椭圆于、两点,为坐标原点,双曲线的虚轴长为,且以、为顶点,以直线、为渐近线,则椭圆的短轴长为()A. B.C. D.8.若椭圆上一点到C的两个焦点的距离之和为,则()A.1 B.3C.6 D.1或39.若数列的前项和,则此数列是()A.等差数列 B.等比数列C.等差数列或等比数列 D.以上说法均不对10.已知,若与的展开式中的常数项相等,则()A.1 B.3C.6 D.911.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为A. B.C. D.12.已知椭圆=1的离心率为,则k的值为()A.4 B.C.4或 D.4或二、填空题:本题共4小题,每小题5分,共20分。13.瑞士数学家欧拉(Euler)1765年在所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知的顶点,,,则欧拉线的方程为______14.已知点在抛物线上,那么点到点的距离与点到抛物线焦点距离之和取得最小值时,点的坐标为______15.若椭圆:的长轴长为4,焦距为2,则椭圆的标准方程为______.16.若不等式的解集是,则的值是___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知对于,函数有意义,关于k的不等式成立.(1)若为假命题,求k的取值范围;(2)若p是q的必要不充分条件,求m的取值范围.18.(12分)已知椭圆的右焦点是椭圆上的一动点,且的最小值是1,当垂直长轴时,.(1)求椭圆的标准方程;(2)设直线与椭圆相切,且交圆于两点,求面积的最大值,并求此时直线方程.19.(12分)已知某学校的初中、高中年级的在校学生人数之比为9:11,该校为了解学生的课下做作业时间,用分层抽样的方法在初中、高中年级的在校学生中共抽取了100名学生,调查了他们课下做作业的时间,并根据调查结果绘制了如下频率分布直方图:(1)在抽取的100名学生中,初中、高中年级各抽取的人数是多少?(2)根据频率分布直方图,估计学生做作业时间的中位数和平均时长(同一组中的数据用该组区间的中点值作代表);(3)另据调查,这100人中做作业时间超过4小时的人中2人来自初中年级,3人来自高中年级,从中任选2人,恰好1人来自初中年级,1人来自高中年级的概率是多少20.(12分)已知函数,曲线在点处的切线与直线垂直(其中为自然对数的底数)(1)求的值;(2)是否存在常数,使得对于定义域内的任意,恒成立?若存在,求出的值;若不存在,请说明理由21.(12分)一项“过关游戏”规则规定:在第关要抛掷一颗正六面体骰子次,每次掷得的点数均相互独立,如果这次抛掷所出现的点数之和大于,则算过关.(1)这个游戏最多过几关?(2)某人连过前两关的概率是?(3)某人连过前三关的概率是?22.(10分)已知椭圆C:的长轴长为4,离心率e是方程的一根(1)求椭圆C的方程;(2)已知O是坐标原点,斜率为k的直线l经过点,已知直线l与椭圆C相交于点A,B,求面积的最大值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】构造函数h(x)=f(x)g(x),由已知得当x<0时,h(x)<0,所以函数y=h(x)在(﹣∞,0)单调递减,又因为f(x),g(x)分别是定义在R上的奇函数和偶函数,得函数y=h(x)为R上的奇函数,所以函数y=h(x)在(0,+∞)单调递减,得到f(x)g(x)<0不等式的解集【详解】设h(x)=f(x)g(x),因为当x<0时,f(x)g(x)+f(x)g(x)<0,所以当x<0时,h(x)<0,所以函数y=h(x)在(﹣∞,0)单调递减,又因为f(x),g(x)分别是定义在R上的奇函数和偶函数,所以函数y=h(x)为R上的奇函数,所以函数y=h(x)在(0,+∞)单调递减,因为f(﹣1)=0,所以函数y=h(x)的大致图象如下:所以等式f(x)g(x)<0的解集为(﹣1,0)∪(1,+∞)故选A【点睛】本题考查导数乘法法则、导数的符号与函数单调性的关系;奇函数的单调性在对称区间上一致,属于中档题2、C【解析】根据题意可求出C的方程为,即可根据题意判断各选项的真假【详解】对A,由可得,化简得,即,A错误;对B,当A,B,P三点不共线时,点到直线的最大距离为,所以面积的最大值为,B错误;对C,当A,B,P三点不共线时,因为,所以射线是的角平分线,C正确;对D,设,由可得点的轨迹方程为,而圆与圆的圆心距为,两圆内含,所以这样的点不存在,D错误故选:C3、C【解析】首先写出展开式的通项公式,然后结合通项公式确定的系数即可.【详解】展开式的通项公式为:,令可得:,则的系数为:.故选:C.【点睛】二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项4、B【解析】求出样本的中心点,再利用回归直线必过样本的中心点计算作答.【详解】依题意,,则这个样本的中心点为,因此,,解得,所以实数m的值为6.故选:B5、A【解析】根据数列的周期性即可求解.【详解】由得,显然该数列中的数从开始循环,数列的周期是,所以.故选:A.6、B【解析】因为随机事件指的是在一定条件下,可能发生,也可能不发生的事件,只需逐一判断4个事件哪一个符合这种情况即可【详解】解:连续两次抛掷同一个骰子,两次都出现2点这一事件可能发生也可能不发生,①是随机事件某人买彩票中奖这一事件可能发生也可能不发生,②是随机事件从集合,2,中任取两个元素,它们的和必大于2,③是必然事件在标准大气压下,水加热到时才会沸腾,④是不可能事件故随机事件有2个,故选:B7、C【解析】不妨取点在第一象限,根据椭圆与双曲线的几何性质,以及它们之间的联系,可得点的坐标,再将其代入椭圆的方程中,解之即可【详解】解:由题意知,在椭圆中,有,在双曲线中,有,,即,双曲线的渐近线方程为,不妨取点在第一象限,则的坐标为,即,将其代入椭圆的方程中,有,,解得,椭圆的短轴长为故选:8、B【解析】讨论焦点的位置利用椭圆定义可得答案.【详解】若,则由得(舍去);若,则由得故选:B.9、D【解析】利用数列通项与前n项和的关系和等差数列及等比数列的定义判断.【详解】当时,,当时,,当时,,所以是等差数列;当时,为非等差数列,非等比数列’当时,,所以是等比数列,故选:D10、B【解析】根据二项展开式的通项公式即可求出【详解】的展开式中的常数项为,而的展开式中的常数项为,所以,又,所以故选:B11、A【解析】每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为p=选A12、C【解析】根据焦点所在坐标轴进行分类讨论,由此求得的值.【详解】当焦点在轴上时,,且.当焦点在轴上时,且.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据给定信息,利用三角形重心坐标公式求出的重心,再结合对称性求出的外心,然后求出欧拉线的方程作答.【详解】因的顶点,,,则的重心,显然的外心在线段AC中垂线上,设,由得:,解得:,即点,直线,化简整理得:,所以欧拉线的方程为.故答案:14、【解析】由抛物线定义可得,由此可知当为与抛物线的交点时,取得最小值,进而求得点坐标.【详解】由题意得:抛物线焦点为,准线为作,垂直于准线,如下图所示:由抛物线定义知:(当且仅当三点共线时取等号)即的最小值为,此时为与抛物线的交点故答案为【点睛】本题考查抛物线线上的点到焦点的距离与到定点距离之和最小的相关问题的求解,关键是能够熟练应用抛物线定义确定最值取得的位置.15、【解析】由焦距可得c,长轴长得到a,再根据可得答案.【详解】因为椭圆的长轴长为4,则,焦距为2,由,得,则椭圆的标准方程为:.故答案为:.16、【解析】利用和是方程的两根,再利用根与系数的关系即可求出和的值,即可得的值.【详解】由题意可得:方程的两根是和,由根与系数的关系可得:,所以,所以,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由与的真假相反,得出为真命题,将定义域问题转化为不等式的恒成立问题,讨论参数的取值,得出答案;(2)由必要不充分条件的定义得出,讨论的取值结合包含关系得出的范围.【详解】解:(1)因为为假命题,所以为真命题,所以对恒成立.当时,不符合题意;当时,则有,则.综上,k的取值范围为.(2)由,得.由(1)知,当为真命题时,则令令因为p是q的必要不充分条件,所以当时,,,解得当时,,符合题意;当时,,符合题意;所以的取值范围是【点睛】本题主要考查了不等式的恒成立问题以及根据必要不充分条件求参数范围,属于中档题.18、(1);(2),.【解析】(1)由的最小值为1,得到,再由,结合,求得的值,即可求得椭圆的方程.(2)设切线的方程为,联立方程组,根据直线与椭圆相切,求得,结合点到直线的距离公式和圆的弦长公式,求得的面积的表示,结合函数的单调性,即可求解.【详解】(1)由题意,点椭圆上的一动点,且的最小值是1,得,因为当垂直长轴时,可得,所以,即,又由,解得,所以椭圆的标准方程为.(2)由题意知切线的斜率一定存在,否则不能形成,设切线的方程为,联立,整理得,因为直线与椭圆相切,所以,化简得,则,因为点到直线的距离,所以,即,故的面积为,因为,可得,即,函数在上单调递增,所以,当时取等号,则,即面积的最大值为.当时,此时,所以直线的方程为.【点睛】对于直线与椭圆的位置关系的处理方法:1、判定与应用直线与椭圆的位置关系,一把转化为研究直线方程与椭圆组成的方程组的解得个数,结合判别式求解;2、对于过定点的直线,也可以通过定点在椭圆的内部或在椭圆上,判定直线与椭圆的位置关系.19、(1)初中、高中年级所抽取人数分别为45、55(2)2.375小时,2.4小时(3)【解析】(1)依据分层抽样的原则列方程即可解决;(2)依据频率分布直方图计算学生做作业时间的中位数和平均时长即可;(3)依据古典概型即可求得恰好1人来自初中年级,1人来自高中年级的概率.【小问1详解】设初中、高中年级所抽取人数分别为x、y,由已知可得,解得;【小问2详解】的频率为,的频率为,的频率为因为,,所以中位数在区间上,设为x,则,解得,所以学生做作业时间的中位数为2.375小时;平均时长为小时.故估计学生做作业时间的中位数为2.375小时,平均时长为2.4小时【小问3详解】2人来自初中年级,记为,,3人来自高中年级,记为,,,则从中任选2人,所有可能结果有:,,,,,,,,,共10种,其中恰好1人来自初中年级,1人来自高中年级有6种可能,所以恰好1人来自初中年级,1人来自高中年级的概率为20、(1)2;(2)存在,.【解析】(1)对函数求导,利用得的值;(2)讨论和分离参数,构造新函数求解最值即可求解【详解】解:(1),又由题意有(2)由(1)知,此时,由或,所以函数的单调减区间为和要恒成立,即①当时,,则要恒成立,令,再令,所以在内递减,所以当时,,故,所以在内递增,;②当时,lnx>0,则要恒成立,由①可知,当时,,所以内递增,所以当时,,故,所以在内递增,综合①
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 校本课程(物理趣味知识及实验)
- 《生物电化学》课件
- 《头颈部疾病CT诊断》课件
- 《公共关系危机处理》课件
- 《通信工程与概预算》课件
- 地理新教师培训讲座
- 三年级数学两位数乘两位数笔算题评价试题试题
- 垂体瘤护理查房
- 重庆市2022届高三下学期第二次诊断性考试(二模)化学试卷
- 团体辅导活动策划案
- 肿瘤科运用PDCA循环降低癌痛患者爆发性疼痛发生率品管圈成果汇报
- 肠道准备指南解读
- 平台型企业的崛起(TheRiseofthePlatformEnterprise)
- 20%的氨水安全要求
- 2023年副主任医师(副高)-口腔内科学(副高)考试上岸题库(历年真题)答案
- 2023多囊卵巢综合征诊治路径专家共识(最全版)
- 风险辨识与评估管理制度
- 更换皮带滚筒安全作业标准
- 四川省绵阳市某中学自主招生物理试卷(含答案)
- 抗燃油系统检修作业指导书
- 高校辅导员培训PPT课件:辅导员的工作流程与工作方法
评论
0/150
提交评论