版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省长春八中2023-2024学年数学高二上期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若方程表示焦点在y轴上的双曲线,则k的取值范围是()A. B.C. D.2.已知双曲线的两个焦点为,,是此双曲线上的一点,且满足,,则该双曲线的方程是()A. B.C. D.3.下列命题正确的是()A经过三点确定一个平面B.经过一条直线和一个点确定一个平面C.四边形确定一个平面D.两两相交且不共点的三条直线确定一个平面4.为迎接第24届冬季奥运会,某校安排甲、乙、丙、丁、戊共5名学生担任冰球、冰壶和短道速滑三个项目的志愿者,每个比赛项目至少安排1人,每人只能安排到1个项目,则所有排法的总数为()A.60 B.120C.150 D.2405.已知双曲线的离心率为5,则其标准方程为()A. B.C. D.6.已知双曲线的右焦点为F,则点F到其一条渐近线的距离为()A.1 B.2C.3 D.47.函数有两个不同的零点,则实数的取值范围是()A. B.C. D.8.焦点坐标为,(0,4),且长半轴的椭圆方程为()A. B.C. D.9.已知等比数列的各项均为正数,且,则()A. B.C. D.10.在平面几何中,将完全覆盖某平面图形且直径最小的圆,称为该平面图形的最小覆盖圆.如线段的最小覆盖圆就是以该线段为直径的圆,锐角三角形的最小覆盖圆就是该三角形的外接圆.若,,,则的最小覆盖圆的半径为()A. B.C. D.11.已知函数的导数为,且满足,则()A. B.C. D.12.直线与圆的位置关系是()A.相切 B.相交C.相离 D.不确定二、填空题:本题共4小题,每小题5分,共20分。13.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为100,200,150,50件.为检验产品的质量,现用分层抽样的方法从以上所有产品中抽取60件进行检验,则应从丙种型号的产品中抽取___________件14.已知函数,若存在唯一零点,则的取值范围是__________.15.已知命题:方程表示焦点在轴上的椭圆;命题:方程表示双曲线.若为真,则实数的取值范围为______.16.若p:存在,使是真命题,则实数a的取值范围是______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线C:上一点到焦点F的距离为2(1)求实数p的值;(2)若直线l过C的焦点,与抛物线交于A,B两点,且,求直线l的方程18.(12分)已知数列的前项和分别是,满足,,且.(1)求数列的通项公式;(2)若数列对任意都有恒成立,求.19.(12分)已知椭圆的焦距为,点在椭圆上.过点的直线l交椭圆于A,B两点.(1)求该椭圆的方程;(2)若点P为直线上的动点,记直线PA,PM,PB的斜率分别为,,.求证:,,成等差数列.20.(12分)已知椭圆的左、右焦点分别是,点P是椭圆C上任一点,若面积的最大值为,且离心率(1)求C的方程;(2)A,B为C的左、右顶点,若过点且斜率不为0的直线交C于M,N两点,证明:直线与的交点在一条定直线上21.(12分)在四棱锥中,底面是边长为2的菱形,平面,,是的中点.(1)若为线段的中点,证明:平面;(2)线段上是否存在点,使得直线与平面所成角的正弦值为,若存在,求的长,若不存在,请说明理由.22.(10分)已知圆,是圆上一点,过A作直线l交圆C于另一点B,交x轴正半轴于点D,且A为的中点.(1)求圆C在点A处的切线方程;(2)求直线l的方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由条件可得,即可得到答案.【详解】方程表示焦点在y轴上的双曲线所以,即故选:B2、A【解析】由,可得进一步求出,由此得到,则该双曲线的方程可求【详解】,即,则.即,则该双曲线的方程是:故选:A【点睛】方法点睛:求圆锥曲线的方程,常用待定系数法,先定式(根据已知确定焦点所在的坐标轴,设出曲线的方程),再定式(根据已知建立方程组解方程组得解).3、D【解析】由平面的基本性质结合公理即可判断.【详解】对于A,过不在一条直线上三点才能确定一个平面,故A不正确;对于B,经过一条直线和直线外一个点确定一个平面,故B不正确;对于C,空间四边形不能确定一个平面,故C不正确;对于D,两两相交且不共点的三条直线确定一个平面,故D正确.故选:D4、C【解析】结合排列组合的知识,分两种情况求解.【详解】当分组为1人,1人,3人时,有种,当分组为1人,2人,2人时有种,所以共有种排法.故选:C5、D【解析】双曲线离心率公式和a、b、c的关系即可求得m,从而得到双曲线的标准方程.【详解】∵双曲线,∴,又,∴,∵离心率为,∴,解得,∴双曲线方程.故选:D.6、A【解析】由双曲线方程可写出右焦点坐标,再写一渐近线方程,根据点到直线的距离公式可得答案.【详解】双曲线的右焦点F坐标为,根据双曲线的对称性,不妨取一条渐近线为,故点F到渐近线的距离为,故选:A7、B【解析】方程有两个根,转化为求函数的单调性与极值【详解】函数定义域是,有两个零点,即有两个不等实根,即有两个不等实根设,则,时,,递减,时,,递增,极小值=,而时,,时,,所以故选:B8、B【解析】根据题意可知,即可由求出,再根据焦点位置得出椭圆方程【详解】因为,所以,而焦点在轴上,所以椭圆方程为故选:B9、B【解析】利用对数的运算性质,结合等比数列的性质可求得结果.【详解】是各项均为正数的等比数列,,,,.故选:B10、C【解析】根据新定义只需求锐角三角形外接圆的方程即可得解.【详解】,,,为锐角三角形,的外接圆就是它的最小覆盖圆,设外接圆方程为,则解得的最小覆盖圆方程为,即,的最小覆盖圆的半径为.故选:C11、C【解析】首先求出,再令即可求解.【详解】由,则,令,则,所以.故选:C【点睛】本题主要考查了基本初等函数的导数以及导数的基本运算法则,属于基础题.12、B【解析】直线恒过定点,而此点在圆的内部,故可得直线与圆的位置关系.【详解】直线恒过定点,而,故点在圆的内部,故直线与圆的位置关系为相交,故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据分层抽样的方法,即可求解.【详解】由题意,甲、乙、丙、丁四种不同型号的产品,产量分别为100,200,150,50件,用分层抽样的方法从以上所有产品中抽取60件进行检验,则应从丙种型号的产品中抽取个数为件.故答案为:.14、【解析】求得函数的导数,得到是的唯一零点,转化为方程无实数根或只存在实数根,进而转化为和的图象至多有一个交点(且如果有交点,交点必须在处),利用导数求得函数的单调性和最小值,即可求解.【详解】由题意,函数,可得,因为存在唯一零点,所以是的唯一零点,则关于的方程无实数根或只存在实数根,所以函数和的图象至多有一个交点(且如果有交点,交点必须在处),又由,当时,,单调递减;当时,,单调递增,所以,所以,即即的取值范围是.故答案为:.15、【解析】既然为真,那么就是为真,即p是假,并且q是真,根据椭圆和双曲线的定义即可解出。【详解】∵为真,∴p为假,q为真;考虑p为真的情况:解得……①;由于p为假,∴或;由于q为真,∴,即……②;由①和②得:;故答案为:.16、【解析】将问题分离参数得到存在,使成立,可得结论.【详解】存在,使,即存在,使,所以故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)2(2)或【解析】(1)根据抛物线上的点到焦点与准线的距离相等可得到结果(2)通过联立抛物线与直线方程利用韦达定理求解关系式即可得到结果【小问1详解】抛物线焦点为,准线方程为,因为点到焦点F距离为2,所以,解得【小问2详解】抛物线C的焦点坐标为,当斜率不存在时,可得不满足题意,当斜率存在时,设直线l的方程为联立方程,得,显然,设,,则,所以,解得所以直线l的方程为或18、(1),(2)【解析】(1)根据已知递推关系式再写一式,然后两式相减,由等差数列、等比数列的定义即可求解;(2)根据已知递推关系式再写一式,然后两式相减,求出,最后利用错位相减法即可得答案.【小问1详解】解:因为,,所以,,得,所以是以2为首项2为公差的等差数列,是以1为首项2为公差的等差数列,所以,,所以;因为,所以,又由得,所以是以2为首项2为公比的等比数列,所以.【小问2详解】解:当时,,当时,,得,即,记,则,,则.19、(1);(2)证明见解析.【解析】(1)根据焦点坐标及椭圆上的点,利用椭圆的定义求出a,再由关系求b,即可得解;(2)分直线斜率存在与不存在两种情况讨论,利用斜率公式计算出,根据等差中项计算,即可证明成等差数列.【小问1详解】∵椭圆的焦距,椭圆的两焦点坐标分别为,又点在椭圆上,,即.该椭圆方程为.【小问2详解】设.当直线l的斜率为0时,其方程为,代入,可得.不妨取,则,成等差数列.当直线l的斜率不为0时,设其方程为,由,消去x得.即,成等差数列,综上可得,,成等差数列.20、(1);(2)证明见解析.【解析】(1)用待定系数法求出椭圆的方程;(2)设直线MN的方程为x=my+1,设,用“设而不求法”表示出.由直线AM的方程为,直线BN的方程为,联立,解得:,即可证明直线AM与BN的交点在直线上.【小问1详解】由题意可得:,解得:,所以C的方程为.【小问2详解】由(1)得A(-2,0),B(2,0),F2(1,0),设直线MN的方程为x=my+1.设,由,消去y得:,所以.所以.因为直线AM的方程为,直线BN的方程为,二者联立,有,所以,解得:,直线AM与BN的交点在直线上.【点睛】(1)待定系数法可以求二次曲线的标准方程;(2)"设而不求"是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题.21、(1)证明见解析;(2)存在点,且的长为,理由见解析.【解析】(1)取的中点为,连接,得到,结合面面平行的判定定理证得平面平面,进而得到平面;(2)以为原点,所在的直线分别为轴、轴,以垂直平面的直线为轴,建立空间直角坐标系,设,求得的法向量为和向量,结合向量的夹角公式列出方程,求得的值,即可求解.【小问1详解】证明:取的中点为,连接,因为分别为的中点,所以,又因为平面,且,所以平面平面,又由平面,所以平面.【小问2详解】解:以为原点,所在的直线分别为轴、轴,以垂直平面的直线为轴,建立空间直角坐标系,如图所示,因为底面是边长为2的菱形,设,在直角中,可得,在直角中,可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度个人股权转让协议:附送股权证明及身份证明复印件
- 2024年度建筑工程水磨石施工总包合同2篇
- 2024年度标准栏杆工程协议一
- 2024版商场各类展览广告位租赁协议3篇
- 二零二四年度房产买卖合同(附赠附属设施)3篇
- 2024年住宅小区物业管理服务委托协议版B版
- 2024年度网络安全防护解决方案设计与实施合同3篇
- 二零二四年度广告投放平台合作协议
- 2024年度常州大型商业综合体消防设计与维护合同
- 2024版墙面刷新分包合同2篇
- 产科新入职护士培训计划第一年
- 校园公益慈善课件
- 骨密度课件完整版本
- 2024-2025学年北师大版九年级上册数学期中复习试卷
- 新闻采访与写作课件第十五章其他报道样式的写作
- 第一单元第1节感受万物互联的场景-第1课时 教学设计 2024-2025学年沪科版(2024)信息科技八年级上册
- 15 我们不乱扔 教学设计-2024-2025学年道德与法治一年级上册统编版
- 山东科学技术出版社小学一年级上册综合实践活动教案
- Unit 7 Christmas Part B(教学设计)-2024-2025学年闽教版英语四年级上册
- 2024年秋季学期新鲁教版(五四制)六年级上册英语课件 Unit6 Section B (2a-Reflecting)(第5课时)
- Module 6 Animals in danger教学设计 2024-2025学年英语外研版八年级上册
评论
0/150
提交评论