湖南省长沙市望城区第二中学2024届数学高二上期末教学质量检测模拟试题含解析_第1页
湖南省长沙市望城区第二中学2024届数学高二上期末教学质量检测模拟试题含解析_第2页
湖南省长沙市望城区第二中学2024届数学高二上期末教学质量检测模拟试题含解析_第3页
湖南省长沙市望城区第二中学2024届数学高二上期末教学质量检测模拟试题含解析_第4页
湖南省长沙市望城区第二中学2024届数学高二上期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省长沙市望城区第二中学2024届数学高二上期末教学质量检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知中,内角,,的对边分别为,,,,.若为直角三角形,则的面积为()A. B.C.或 D.或2.某校去年有1100名同学参加高考,从中随机抽取50名同学总成绩进行分析,在这个调查中,下列叙述错误的是A.总体是:1100名同学的总成绩 B.个体是:每一名同学C.样本是:50名同学的总成绩 D.样本容量是:503.下列双曲线中,以为一个焦点,以为一个顶点的双曲线方程是()A. B.C. D.4.在中,已知点在线段上,点是的中点,,,,则的最小值为()A. B.4C. D.5.某商场开通三种平台销售商品,五一期间这三种平台的数据如图1所示.该商场为了解消费者对各平台销售方式的满意程度,用分层抽样的方法抽取了6%的顾客进行满意度调查,得到的数据如图2所示.下列说法正确的是()A.样本中对平台一满意的消费者人数约700B.总体中对平台二满意的消费者人数为18C.样本中对平台一和平台二满意的消费者总人数为60D.若样本中对平台三满意消费者人数为120,则6.已知集合,则()A. B.C. D.7.已知椭圆的左、右焦点分别为,过的直线与椭圆C相交P,Q两点,若,且,则椭圆C的离心率为()A. B.C. D.8.已知,,2成等差数列,则在平面直角坐标系中,点M(x,y)的轨迹为()A. B.C. D.9.已知抛物线上的一点,则点M到抛物线焦点F的距离等于()A.6 B.5C.4 D.210.在等比数列中,是和的等差中项,则公比的值为()A.-2 B.1C.2或-1 D.-2或111.正方体的棱长为2,E,F,G分别为,AB,的中点,则直线ED与FG所成角的余弦值为()A. B.C. D.12.△ABC两个顶点坐标A(-4,0),B(4,0),它的周长是18,则顶点C的轨迹方程是()A. B.(y≠0)C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某公司青年、中年、老年员工的人数之比为10∶8∶7,从中抽取100名作为样本,若每人被抽中的概率是0.2,则该公司青年员工的人数为__________14.若抛物线上一点到轴的距离是4,则点到该抛物线焦点的距离是___________.15.记为等差数列{}的前n项和,若,,则=_________.16.已知直线,,为抛物线上一点,则到这两条直线距离之和的最小值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆的半径为,圆心在直线上,点在圆上.(1)求圆的标准方程;(2)若原点在圆内,求过点且与圆相切的直线方程.18.(12分)如图甲,平面图形中,,沿将折起,使点到点的位置,如图乙,使.(1)求证:平面平面;(2)若点满足,求点到直线的距离.19.(12分)如图所示,第九届亚洲机器人锦标赛VEX中国选拔赛永州赛区中,主办方设计了一个矩形坐标场地ABCD(包含边界和内部,A为坐标原点),AD长为10米,在AB边上距离A点4米的F处放置一只电子狗,在距离A点2米的E处放置一个机器人,机器人行走速度为v,电子狗行走速度为,若电子狗和机器人在场地内沿直线方向同时到达场地内某点M,那么电子狗将被机器人捕获,点M叫成功点.(1)求在这个矩形场地内成功点M的轨迹方程;(2)P为矩形场地AD边上的一动点,若存在两个成功点到直线FP的距离为,且直线FP与点M的轨迹没有公共点,求P点横坐标的取值范围.20.(12分)已知数列的前n项和为,且.(1)求数列的通项公式;(2)令,求数列的前n项和.21.(12分)已知椭圆经过点,椭圆E的一个焦点为(1)求椭圆E的方程;(2)若直线l过点且与椭圆E交于A,B两点.求的最大值22.(10分)保护生态环境,提倡环保出行,节约资源和保护环境,某地区从2016年开始大力提倡新能源汽车,每年抽样1000汽车调查,得到新能源汽车y辆与年份代码x年的数据如下表:年份20162017201820192020年份代码第x年12345新能源汽车y辆305070100110(1)建立y关于x的线性回归方程;(2)假设该地区2022年共有30万辆汽车,用样本估计总体来预测该地区2022年有多少新能源汽车参考公式:回归方程斜率和截距的最小二乘估计公式分别为,

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由正弦定理化角为边后,由余弦定理求得,然后分类讨论:或求解【详解】由正弦定理,可化为:,即,所以,,所以,又为直角三角形,若,则,,,,若,则,,,故选:C2、B【解析】采用逐一验证法,根据总体,个体,样本的概念,可得结果.【详解】据题意:总体是1100名同学的总成绩,故A正确个体是每名同学的总成绩,故B错样本是50名同学的总成绩,故C正确样本容量是:50,故D正确故选:B【点睛】本题考查总体,个体,样本的概念,属基础题.3、C【解析】设出双曲线方程,根据题意,求得,即可选择.【详解】因为双曲线的一个焦点是,故可设双曲线方程为,且;又为一个顶点,故可得,解得,则双曲线方程为:.故选:.4、C【解析】利用三点共线可得,由,利用基本不等式即可求解.【详解】由点是的中点,则,又因为点在线段上,则,所以,当且仅当,时取等号,故选:C【点睛】本题考查了基本不等式求最值、平面向量共线的推论,考查了基本运算求解能力,属于基础题.5、C【解析】根据扇形图和频率分布直方图判断.【详解】对于A:样本中对平台一满意的人数为,故选项A错误;对于B:总体中对平台二满意的人数约为,故选项B错误;对于C:样本中对平台一和平台二满意的总人数为:,故选项C正确:对于D:对平台三的满意率为,所以,故选项D错误故选:C6、B【解析】先求得集合A,再根据集合的交集运算可得选项.【详解】解:因为,所以故选:B.7、B【解析】设,由椭圆的定义及,结合勾股定理求参数m,进而由勾股定理构造椭圆参数的齐次方程求离心率.【详解】设,椭圆的焦距为,则,由,有,解得,所以,故得:故选:B.8、A【解析】已知,,2成等差数列,得到,化简得到【详解】已知,,2成等差数列,得到,化简得到可知是焦点在x轴上的抛物线的一支.故答案为A.【点睛】这个题目考查的是对数的运算以及化简公式的应用,也涉及到了轨迹的问题,求点的轨迹,通常是求谁设谁,再根据题干将等量关系转化为代数关系,从而列出方程,化简即可.9、B【解析】将点代入抛物线方程求出,再由抛物线的焦半径公式可得答案.详解】将点代入抛物线方程可得,解得则故选:B10、D【解析】由题可得,即求.【详解】由题意,得,所以,因为,所以,解得或.故选:D.11、B【解析】建立空间直角坐标系,利用空间向量坐标运算即可求解.【详解】如图所示建立适当空间直角坐标系,故选:B12、D【解析】根据三角形的周长得出,再由椭圆的定义得顶点C的轨迹为以A,B为焦点的椭圆,去掉A,B,C共线的情况,可求得顶点C的轨迹方程.【详解】因为,所以,所以顶点C的轨迹为以A,B为焦点的椭圆,去掉A,B,C共线的情况,即,所以顶点C的轨迹方程是,故选:D.【点睛】本题考查椭圆的定义,由定义求得动点的轨迹方程,求解时,注意去掉不满足的点,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、200【解析】先根据分层抽样的方法计算出该单位青年职工应抽取的人数,进而算出青年职工的总人数.【详解】由题意,从中抽取100名员工作为样本,需要从该单位青年职工中抽取(人).因为每人被抽中的概率是0.2,所以青年职工共有(人).故答案:200.14、5【解析】根据抛物线的定义知点P到焦点距离等于到准线的距离即可求解.【详解】因为抛物线方程为,所以准线方程,所以点到准线的距离为,故点到该抛物线焦点的距离.故答案为:15、18【解析】根据等差数列通项和前n项和公式即可得到结果.【详解】设等差数列的公差为,由,得,解得,所以故答案为:1816、【解析】过作,垂足分别为,由直线为抛物线的准线,转化,当三点共线时,取得最小值【详解】过作,垂足分别为抛物线的焦点为直线为抛物线的准线由抛物线的定义,故,当三点共线时,取得最小值故最小值为点到直线的距离:故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)或(2)或【解析】(1)先设出圆的标准方程,利用点在圆上和圆心在直线上得到圆心坐标的方程组,进而求出圆的标准方程;(2)先利用原点在圆内求出圆的方程,设出切线方程,利用圆心到切线的距离等于半径进行求解.【小问1详解】解:设圆的标准方程为,由已知得,解得或,故圆的方程为或.【小问2详解】解:因为,,且原点在圆内,故圆的方程为,则圆心为,半径为,设切线为,即,则,解得或,故切线为或,即或即为所求.18、(1)证明见解析(2)【解析】(1)利用给定条件可得平面,再证即可证得平面推理作答.(2)由(1)得EA,EB,EG两两垂直,建立空间直角坐标系,先求出向量在向量上的投影的长,然后由勾股定理可得答案.【小问1详解】因为,则,且,又,平面,因此,平面,即有平面,平面,则,而,则四边形为等腰梯形,又,则有,于是有,则,即,,平面,因此,平面,而平面,所以平面平面.【小问2详解】由(1)知,EA,EB,EG两两垂直,以点E为原点,射线EA,EB,EG分别为x,y,z轴非负半轴建立空间直角坐标系,如图,因,四边形是矩形,则,即,,,由,则则则向量在向量上的投影的长为又,所以点到直线的距离19、(1)(2)【解析】(1)分别以为轴,建立平面直角坐标系,由题意,利用两点间的距离公式可得答案.(2)由题意可得点的轨迹所在圆的圆心到直线的距离,点的轨迹与轴的交点到直线的距离,从而可得答案.【小问1详解】分别以为轴,建立平面直角坐标系,则,设成功点,可得即,化简得因为点需在矩形场地内,所以故所求轨迹方程为【小问2详解】设,直线方程为直线FP与点M轨迹没有公共点,则圆心到直线的距离大于依题意,动点需满足两个条件:点的轨迹所在圆的圆心到直线的距离即,解得②点的轨迹与轴的交点到直线的距离即,解得综上所述,P点横坐标的取值范围是20、(1)(2)【解析】(1)根据与的关系,分和两种情况,求出,再判断是否合并;(2)利用错位相减法求出数列的前n项和.【小问1详解】,当时,,当时,,也满足上式,数列的通项公式为:.【小问2详解】由(1)可得,①②①②得,21、(1);(2).【解析】(1)利用代入法,结合焦点的坐标、椭圆中的关系进行求解即可;(2)根据直线l是否存在斜率分类讨论,结合一元二次方程根的判别式、根与系数关系、弦长公式、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论