湖南省永州市东安县一中2024届高二数学第一学期期末检测模拟试题含解析_第1页
湖南省永州市东安县一中2024届高二数学第一学期期末检测模拟试题含解析_第2页
湖南省永州市东安县一中2024届高二数学第一学期期末检测模拟试题含解析_第3页
湖南省永州市东安县一中2024届高二数学第一学期期末检测模拟试题含解析_第4页
湖南省永州市东安县一中2024届高二数学第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省永州市东安县一中2024届高二数学第一学期期末检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线的两个顶点分别为A、B,点P为双曲线上除A、B外任意一点,且点P与点A、B连线的斜率为,若,则双曲线的离心率为()A. B.C.2 D.32.曲线在点处的切线方程为()A. B.C. D.3.已知双曲线方程为,过点的直线与双曲线只有一个公共点,则符合题意的直线的条数共有()A.4条 B.3条C.2条 D.1条4.气象台正南方向的一台风中心,正向北偏东30°方向移动,移动速度为,距台风中心以内的地区都将受到影响,若台风中心的这种移动趋势不变,气象台所在地受到台风影响持续时间大约是()A. B.C. D.5.已知,,,则点C到直线AB的距离为()A.3 B.C. D.6.若正方体ABCD­A1B1C1D1的棱长为1,则直线A1C1到平面ACD1的距离为()A.1 B.C. D.7.等差数列中,已知,,则的前项和的最小值为()A. B.C. D.8.执行如图所示的程序框图,如果输入,那么输出的a值为()A.3 B.27C.-9 D.99.已知空间向量,,且与互相垂直,则k的值是()A.1 B.C. D.10.日常饮用水通常都是经过净化的,随若水纯净度的提高,所需净化费用不断增加.已知水净化到纯净度为时所需费用单位:元为那么净化到纯净度为时所需净化费用的瞬时变化率是()元/t.A. B.C. D.11.在等比数列中,,且,则t=()A.-2 B.-1C.1 D.212.已知集合,从集合A中任取一点P,则点P满足约束条件的概率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设圆,圆,则圆有公切线___________条.14.机动车驾驶考试是为了获得机动车驾驶证的考试,采用全国统一的考试科目内容及合格标准,包括科目一理论考试、科目二场地驾驶技能考试、科目三道路驾驶技能考试和科目四安全文明常识考试共四项考试,考生应依次参加四项考试,前一项考试合格后才能报名参加后一项考试,考试不合格则需另行交费预约再次补考.据公安部门通报,佛山市四项考试的合格率依次为,,,,且各项考试是否通过互不影响,则一位佛山公民通过驾考四项考试至多需要补考一次的概率为______15.已知数列的前n项和为,则______16.在长方体中,M、N分别是BC、的中点,若,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知定点,动点满足,设点的轨迹为.(1)求轨迹的方程;(2)若点分别是圆和轨迹上的点,求两点间的最大距离.18.(12分)设数列是公比为正整数的等比数列,满足,,设数列满足,.(1)求数列的通项公式;(2)求证:数列是等差数列,并求数列的通项公式;(3)已知数列,设,求数列的前项和.19.(12分)已知是边长为2的正方形,正方形绕旋转形成一个圆柱;(1)求该圆柱的表面积;(2)正方形绕顺时针旋转至,求异面直线与所成角的大小20.(12分)已知是公差不为零等差数列,,且、、成等比数列(1)求数列的通项公式:(2)设.数列{}的前项和为,求证:21.(12分)已知函数.(1)当时,求的极值;(2)设函数,,,求证:.22.(10分)已知过点的圆的圆心M在直线上,且y轴被该圆截得的弦长为4(1)求圆M的标准方程;(2)设点,若点P为x轴上一动点,求的最小值,并写出取得最小值时点P的坐标

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据题意设设,根据题意得到,进而求得离心率【详解】根据题意得到设,因为,所以,所以,则故选:C.2、A【解析】利用切点和斜率求得切线方程.【详解】由,有曲线在点处的切线方程为,整理为故选:A3、A【解析】利用双曲线渐近线的性质,结合一元二次方程根的判别式进行求解即可.【详解】解:双曲线的渐近线方程为,右顶点为.①直线与双曲线只有一个公共点;②过点平行于渐近线时,直线与双曲线只有一个公共点;③设过的切线方程为与双曲线联立,可得,由,即,解得,直线的条数为1.综上可得,直线的条数为4.故选:A,.4、D【解析】利用余弦定理进行求解即可.【详解】如图所示:设台风中心为,,小时后到达点处,即,当时,气象台所在地受到台风影响,由余弦定理可知:,于是有:,解得:,所以气象台所在地受到台风影响持续时间大约是,故选:D5、D【解析】应用空间向量的坐标运算求在上投影长及的模长,再应用勾股定理求点C到直线AB的距离.【详解】因为,,所以设点C到直线AB的距离为d,则故选:D6、B【解析】先证明点A1到平面ACD1的距离即为直线A1C1到平面ACD1的距离,再建立空间直角坐标系,利用向量法求解.【详解】因为平面平面,所以A1C1//平面ACD1,则点A1到平面ACD1的距离即为直线A1C1到平面ACD1的距离.建立如图所示的空间直角坐标系,易知=(0,0,1),由题得平面,所以平面,所以,同理,因为平面,所以平面,所以是平面一个法向量,所以平面ACD1的一个法向量为=(1,1,1),故所求的距离为.故选:B【点睛】方法点睛:求点到平面的距离常用的方法有:(1)几何法(找作证指求);(2)向量法;(3)等体积法.要根据已知条件灵活选择方法求解.7、B【解析】由等差数列的性质将转化为,而,可知数列是递增数,从而可求得结果【详解】∵等差数列中,,∴,即.又,∴的前项和的最小值为故选:B8、B【解析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环累乘值,并判断满足时输出的值【详解】解:模拟执行程序框图,可得,时,不满足条件,;不满足条件,;不满足条件,;满足条件,退出循环,输出的值为27故选:9、D【解析】由=0可求解【详解】由题意,故选:D10、B【解析】由题意求出函数的导函数,然后令即可求解【详解】因为,所以,则,故选:11、A【解析】先求出,利用等比中项求出t.【详解】在等比数列中,,且,所以所以,即,解得:.当时,,不符合等比数列的定义,应舍去,故.故选:A.12、C【解析】根据圆的性质,结合两条直线的位置关系、几何概型计算公式进行求解即可.【详解】,圆心坐标为,半径为,直线互相垂直,且交点为,由圆的性质可知:点P满足约束条件的概率为,故选:C二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】将圆转化成标准式,结合圆心距判断两圆位置关系,进而求解.【详解】由题意得,圆:,圆:,∴,∴与相交,有2条公切线.故答案为:214、【解析】至多需要补考一次,分5种情况分别计算后再求和即可.【详解】不需要补考就通过的概率为;仅补考科目一就通过的概率为;仅补考科目二就通过的概率为;仅补考科目三就通过的概率为;仅补考科目三就通过的概率为,一位佛山公民通过驾考四项考试至多需要补考一次的概率为.故答案为:15、【解析】先通过裂项相消求出,再代入计算即可.【详解】,则,故.故答案为:3.16、-2【解析】作出图像,根据几何关系,结合空间向量的加减法运算法则即可求解.【详解】,∴,,,故答案为:-2.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)设动点,根据条件列出方程,化简求解即可;(2)设,求出圆心到轨迹上点的距离,配方求最值即可得解.【小问1详解】设动点,则,,,又,∴,化简得,即,∴动点的轨迹E的方程为.【小问2详解】设,圆心到轨迹E上的点的距离∴当时,,∴.18、(1)(2)证明见解析,(3)【解析】(1)根据等比数列列出方程组求解首项、公比即可得解;(2)化简后得,可证明数列是等差数列,即可得出,再求出即可;(3)利用错位相减法求出数列的和.【小问1详解】设公比为,由条件可知,,所以;【小问2详解】,又,所以,所以数列是以为首项,为公差等差数列,所以,所以.【小问3详解】,,两式相减可得,,.19、(1)(2)【解析】(1)利用表面积公式直接计算得到答案.(2)连接和,,故即为异面直线与所成角,证明,根据长度关系得到答案.【小问1详解】【小问2详解】如图所示:连接和,,故即为异面直线与所成角,,,,故平面,平面,故,,故,直角中,,,,故异面直线与所成角的大小为.20、(1);(2)证明见解析.【解析】(1)设等差数列的公差为,则,根据题意可得出关于的方程,求出的值,利用等差数列的通项公式可求得数列的通项公式;(2)求得,利用裂项相消法求出,即可证得结论成立.【小问1详解】解:设等差数列的公差为,则,由题意可得,即,整理可得,,解得,因此,.【小问2详解】证明:,因此,,故原不等式得证.21、(1),无极大值(2)证明见解析【解析】(1)求出函数的导数,判断函数的单调性,进而确定极值点,求得答案;(2)将要证明的不等式变形为,然后构造函数,利用导数判断其单调性,求其最值,进而证明结论.【小问1详解】当时,,,由得,列表得:1--0+减减极小值增由上表可知,无极大值.;【小问2详解】证明:,即证;∵,则,故只需证,即证令,,得,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论