




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.6正多边形与圆课堂同步练-苏科版初中数学九年级上册学校:___________姓名:___________班级:___________考号:___________一、单选题1.要判断命题“有两个角是直角的圆内接四边形是矩形”是假命题,下列图形可作为反例的是(
)A. B. C. D.2.如图,五边形是的内接正五边形,是的直径,则的度数是(
)A. B. C. D.3.已知圆锥侧面展开图的扇形半径为2cm,面积是,则扇形的弧长和圆心角的度数分别为A. B. C. D.4.如图,、是的半径,是上一点,连接、.若,则的大小为(
)A.126° B.116° C.108° D.106°5.如图,正六边形ABCDEF内接于,过点O作弦BC于点M,若的半径为4,则弦心距OM的长为()A. B. C.2 D.6.如图,直线将正六边形分割成两个区域,且分别与、相交于点、点.若的外角为,则的度数为(
)A. B. C. D.7.如图,正六边形内接于半径为的中,连接,,,沿直线折叠,使得点与点重合,则图中阴影部分的面积为(
)
A. B. C. D.8.如图,四边形ABCD内接于⊙O,若∠BOD=140°,则∠BCD的大小是()度.A.110 B.130 C.115 D.709.如图,△ABC内接于⊙O,将沿BC翻折,交AC于点D,连接BD,若∠BAC=66°,则∠ABD的度数是(
)A.66 B.44 C.46 D.4810.下列说法正确的有(
)①平分弦的直径垂直于弦.②半圆所对的圆周角是直角.③一条弧所对的圆周角等于它所对的圆心角的一半.④在同圆或等圆中,如果两条弦相等,那么他们所对的圆周角相等.⑤圆内接平行四边形是矩形.A.1个 B.2个 C.3个 D.4个二、填空题11.如图,边长为2的正六边形的中心与坐标原点O重合,轴,将正六边形绕原点O逆时针旋转n次,每次旋转,当时,顶点A的坐标为.12.如图,的内接正六边形周长为,则这个正六边形的面积为.13.如图,⊙O的半径为10,则⊙O的内接正三角形ABC的边长为.14.如图,四边形ABCD内接于⊙O,∠A=102°,则∠C=°.15.如图,点O为线段BC的中点,点A、C、D到点O的距离相等,若∠ABC=40°,则∠ADC的度数是.16.如图,正六边形ABCDEF的边长为2,则该正六边形的外接圆与内切圆所形成的圆环面积为.17.如图,在正八边形中,连接、,则的度数是.
18.如图,正方形ABCD内接于⊙O,其边长为4,则⊙O的内接正三角形EFG的边长为.
19.如果正六边形的半径长为2,那么它的面积为.20.若一个圆的内接正六边形的边长为2,则这个圆的半径是.三、解答题21.如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹)(1)作△ABC的外接圆圆心O;(2)设D是AB边上一点,在图中作出一个等边△DFH,使点F,点H分别在边BC和AC上;(3)在(2)的基础上作出一个正六边形DEFGHI.22.如图,正方形内接于,E是的中点,连接.
(1)求证:;(2)若,求四边形的面积.23.如图,已知正六边形ABCDEF,其外接圆的半径是a,求正六边形的周长和面积.求⊙O的半径.24.如图.将圆心角相等的但半径不等的两个扇形用与叠合在一起,弧、、弧、合成了一个曲边梯形,若弧、弧的长为,,.(1)试说明;曲边梯形的面积(2)某班兴趣小组进行了一次纸杯制作与探究活动.如图所示,所要制作的纸杯规格要求:杯口直径为,杯底直径为,杯壁母线为,并且在制作过程中纸杯的侧面展开图不允许有拼接.请你求侧面展开图中弧所在的圆的半径长度;(3)若用一张矩形纸片
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 市场分析与营销策略计划
- 班级同学互助小组的成立与运作计划
- 让幼儿探索自然的实践方案计划
- 保安工作总结计划能源行业保安工作的整体考量
- 规范化管理班会课
- 2025年荷泽道路货运从业资格证模拟考试下载什么软件
- 电商平台会员体系个性化营销解决方案
- 2025云端邮件服务合同协议
- 水稻种植技术操作手册
- 电商客户服务标准与操作流程
- 2024年浙江首考高考英语卷试题真题及答案解析(含听力原文+作文范文)
- 2023年北京八十中初二(下)期中数学试卷(教师版)
- 麻醉护理的现状与展望
- 2024年高考一轮复习精细讲义第25讲 实验:验证动量守恒定律(原卷版+解析)
- 毕业设计论文《10t单梁桥式起重机的设计》
- 化工及相关行业废盐资源化用于氯碱行业技术规范
- 《标准工时培训》课件
- 区域轨道交通协同运输与服务应用体系及实践
- 贪心算法 思政案例
- 危岩稳定性计算表格-滑移式-倾倒式-坠落式-完整版
- 2023年广州市小升初数学真题
评论
0/150
提交评论