版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年山东省东营市高三第一次质量调研卷数学试题试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知(i为虚数单位,),则ab等于()A.2 B.-2 C. D.2.在中,,,,若,则实数()A. B. C. D.3.已知为虚数单位,若复数,,则A. B.C. D.4.阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、数学家和物理学家,他死后的墓碑上刻着一个“圆柱容球”的立体几何图形,为纪念他发现“圆柱内切球的体积是圆柱体积的,且球的表面积也是圆柱表面积的”这一完美的结论.已知某圆柱的轴截面为正方形,其表面积为,则该圆柱的内切球体积为()A. B. C. D.5.若圆锥轴截面面积为,母线与底面所成角为60°,则体积为()A. B. C. D.6.《九章算术》“少广”算法中有这样一个数的序列:列出“全步”(整数部分)及诸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去约其分子,将所得能通分之分数进行通分约简,又用最下面的分母去遍乘诸(未通者)分子和以通之数,逐个照此同样方法,直至全部为整数,例如:及时,如图:记为每个序列中最后一列数之和,则为()A.147 B.294 C.882 D.17647.已知,,则()A. B. C.3 D.48.设集合A={4,5,7,9},B={3,4,7,8,9},全集U=AB,则集合中的元素共有()A.3个 B.4个 C.5个 D.6个9.已知直线过圆的圆心,则的最小值为()A.1 B.2 C.3 D.410.已知为坐标原点,角的终边经过点且,则()A. B. C. D.11.抛物线y2=ax(a>0)的准线与双曲线C:x28A.8 B.6 C.4 D.212.已知函数,关于x的方程f(x)=a存在四个不同实数根,则实数a的取值范围是()A.(0,1)∪(1,e) B.C. D.(0,1)二、填空题:本题共4小题,每小题5分,共20分。13.已知半径为的圆周上有一定点,在圆周上等可能地任意取一点与点连接,则所得弦长介于与之间的概率为__________.14.已知抛物线的对称轴与准线的交点为,直线与交于,两点,若,则实数__________.15.公比为正数的等比数列的前项和为,若,,则的值为__________.16.已知集合,则_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,其中.(Ⅰ)当时,求函数的单调区间;(Ⅱ)设,求证:;(Ⅲ)若对于恒成立,求的最大值.18.(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天数216362574以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.19.(12分)设的内角、、的对边长分别为、、.设为的面积,满足.(1)求;(2)若,求的最大值.20.(12分)在平面直角坐标系中,已知椭圆的左、右顶点分别为、,焦距为2,直线与椭圆交于两点(均异于椭圆的左、右顶点).当直线过椭圆的右焦点且垂直于轴时,四边形的面积为6.(1)求椭圆的标准方程;(2)设直线的斜率分别为.①若,求证:直线过定点;②若直线过椭圆的右焦点,试判断是否为定值,并说明理由.21.(12分)在中,角的对边分别为,且.(1)求角的大小;(2)已知外接圆半径,求的周长.22.(10分)已知函数,当时,有极大值3;(1)求,的值;(2)求函数的极小值及单调区间.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
利用复数代数形式的乘除运算化简,再由复数相等的条件列式求解.【详解】,,得,..故选:.【点睛】本题考查复数代数形式的乘除运算,考查复数相等的条件,意在考查学生对这些知识的理解掌握水平,是基础题.2、D【解析】
将、用、表示,再代入中计算即可.【详解】由,知为的重心,所以,又,所以,,所以,.故选:D【点睛】本题考查平面向量基本定理的应用,涉及到向量的线性运算,是一道中档题.3、B【解析】
由可得,所以,故选B.4、D【解析】
设圆柱的底面半径为,则其母线长为,由圆柱的表面积求出,代入圆柱的体积公式求出其体积,结合题中的结论即可求出该圆柱的内切球体积.【详解】设圆柱的底面半径为,则其母线长为,因为圆柱的表面积公式为,所以,解得,因为圆柱的体积公式为,所以,由题知,圆柱内切球的体积是圆柱体积的,所以所求圆柱内切球的体积为.故选:D【点睛】本题考查圆柱的轴截面及表面积和体积公式;考查运算求解能力;熟练掌握圆柱的表面积和体积公式是求解本题的关键;属于中档题.5、D【解析】
设圆锥底面圆的半径为,由轴截面面积为可得半径,再利用圆锥体积公式计算即可.【详解】设圆锥底面圆的半径为,由已知,,解得,所以圆锥的体积.故选:D【点睛】本题考查圆锥的体积的计算,涉及到圆锥的定义,是一道容易题.6、A【解析】
根据题目所给的步骤进行计算,由此求得的值.【详解】依题意列表如下:上列乘上列乘上列乘630603153021020156121510所以.故选:A【点睛】本小题主要考查合情推理,考查中国古代数学文化,属于基础题.7、A【解析】
根据复数相等的特征,求出和,再利用复数的模公式,即可得出结果.【详解】因为,所以,解得则.故选:A.【点睛】本题考查相等复数的特征和复数的模,属于基础题.8、A【解析】试题分析:,,所以,即集合中共有3个元素,故选A.考点:集合的运算.9、D【解析】
圆心坐标为,代入直线方程,再由乘1法和基本不等式,展开计算即可得到所求最小值.【详解】圆的圆心为,由题意可得,即,,,则,当且仅当且即时取等号,故选:.【点睛】本题考查最值的求法,注意运用乘1法和基本不等式,注意满足的条件:一正二定三等,同时考查直线与圆的关系,考查运算能力,属于基础题.10、C【解析】
根据三角函数的定义,即可求出,得出,得出和,再利用二倍角的正弦公式,即可求出结果.【详解】根据题意,,解得,所以,所以,所以.故选:C.【点睛】本题考查三角函数定义的应用和二倍角的正弦公式,考查计算能力.11、A【解析】
求得抛物线的准线方程和双曲线的渐近线方程,解得两交点,由三角形的面积公式,计算即可得到所求值.【详解】抛物线y2=ax(a>0)的准线为x=-a4,双曲线C:x28-y24【点睛】本题考查三角形的面积的求法,注意运用抛物线的准线方程和双曲线的渐近线方程,考查运算能力,属于基础题.12、D【解析】
原问题转化为有四个不同的实根,换元处理令t,对g(t)进行零点个数讨论.【详解】由题意,a>2,令t,则f(x)=a⇔⇔⇔⇔.记g(t).当t<2时,g(t)=2ln(﹣t)(t)单调递减,且g(﹣2)=2,又g(2)=2,∴只需g(t)=2在(2,+∞)上有两个不等于2的不等根.则⇔,记h(t)(t>2且t≠2),则h′(t).令φ(t),则φ′(t)2.∵φ(2)=2,∴φ(t)在(2,2)大于2,在(2,+∞)上小于2.∴h′(t)在(2,2)上大于2,在(2,+∞)上小于2,则h(t)在(2,2)上单调递增,在(2,+∞)上单调递减.由,可得,即a<2.∴实数a的取值范围是(2,2).故选:D.【点睛】此题考查方程的根与函数零点问题,关键在于等价转化,将问题转化为通过导函数讨论函数单调性解决问题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】在圆上其他位置任取一点B,设圆半径为R,其中满足条件AB弦长介于与之间的弧长为•2πR,则AB弦的长度大于等于半径长度的概率P==;故答案为:.14、【解析】
由于直线过抛物线的焦点,因此过,分别作的准线的垂线,垂足分别为,,由抛物线的定义及平行线性质可得,从而再由抛物线定义可求得直线倾斜角的余弦,再求得正切即为直线斜率.注意对称性,问题应该有两解.【详解】直线过抛物线的焦点,,过,分别作的准线的垂线,垂足分别为,,由抛物线的定义知,.因为,所以.因为,所以,从而.设直线的倾斜角为,不妨设,如图,则,,同理,则,解得,,由对称性还有满足题意.,综上,.【点睛】本题考查抛物线的性质,考查抛物线的焦点弦问题,掌握抛物线的定义,把抛物线上点到焦点距离与它到距离联系起来是解题关键.15、56【解析】
根据已知条件求等比数列的首项和公比,再代入等比数列的通项公式,即可得到答案.【详解】,,.故答案为:.【点睛】本题考查等比数列的通项公式和前项和公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.16、【解析】
由可得集合是奇数集,由此可以得出结果.【详解】解:因为所以集合中的元素为奇数,所以.【点睛】本题考查了集合的交集,解析出集合B中元素的性质是本题解题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)函数的单调增区间为,单调减区间为;(Ⅱ)证明见解析;(Ⅲ).【解析】
(Ⅰ)利用二次求导可得,所以在上为增函数,进而可得函数的单调增区间为,单调减区间为;(Ⅱ)利用导数可得在区间上存在唯一零点,所以函数在递减,在,递增,则,进而可证;(Ⅲ)条件等价于对于恒成立,构造函数,利用导数可得的单调性,即可得到的最小值为,再次构造函数(a),,利用导数得其单调区间,进而求得最大值.【详解】(Ⅰ)当时,,则,所以,又因为,所以在上为增函数,因为,所以当时,,为增函数,当时,,为减函数,即函数的单调增区间为,单调减区间为;(Ⅱ),则令,则(1),,所以在区间上存在唯一零点,设零点为,则,且,当时,,当,,,所以函数在递减,在,递增,,由,得,所以,由于,,从而;(Ⅲ)因为对于恒成立,即对于恒成立,不妨令,因为,,所以的解为,则当时,,为增函数,当时,,为减函数,所以的最小值为,则,不妨令(a),,则(a),解得,所以当时,(a),(a)为增函数,当时,(a),(a)为减函数,所以(a)的最大值为,则的最大值为.【点睛】本题考查利用导数研究函数的单调性和最值,以及函数不等式恒成立问题的解法,意在考查学生等价转化思想和数学运算能力,属于较难题.18、(1).(2).【解析】
(1)由前三年六月份各天的最高气温数据,求出最高气温位于区间[20,25)和最高气温低于20的天数,由此能求出六月份这种酸奶一天的需求量不超过300瓶的概率.(2)当温度大于等于25℃时,需求量为500,求出Y=900元;当温度在[20,25)℃时,需求量为300,求出Y=300元;当温度低于20℃时,需求量为200,求出Y=﹣100元,从而当温度大于等于20时,Y>0,由此能估计估计Y大于零的概率.【详解】解:(1)由前三年六月份各天的最高气温数据,得到最高气温位于区间[20,25)和最高气温低于20的天数为2+16+36=54,根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶,如果最高气温位于区间[20,25),需求量为300瓶,如果最高气温低于20,需求量为200瓶,∴六月份这种酸奶一天的需求量不超过300瓶的概率p.(2)当温度大于等于25℃时,需求量为500,Y=450×2=900元,当温度在[20,25)℃时,需求量为300,Y=300×2﹣(450﹣300)×2=300元,当温度低于20℃时,需求量为200,Y=400﹣(450﹣200)×2=﹣100元,当温度大于等于20时,Y>0,由前三年六月份各天的最高气温数据,得当温度大于等于20℃的天数有:90﹣(2+16)=72,∴估计Y大于零的概率P.【点睛】本题考查概率的求法,考查利润的所有可能取值的求法,考查函数、古典概型等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.19、(1);(2).【解析】
(1)根据条件形式选择,然后利用余弦定理和正弦定理化简,即可求出;(2)由(1)求出角,利用正弦定理和消元思想,可分别用角的三角函数值表示出,即可得到,再利用三角恒等变换,化简为,即可求出最大值.【详解】(1)∵,即,∴变形得:,整理得:,又,∴;(2)∵,∴,由正弦定理知,,∴,当且仅当时取最大值.故的最大值为.【点睛】本题主要考查正弦定理,余弦定理,三角形面积公式的应用,以及利用三角恒等变换求函数的最值,意在考查学生的转化能力和数学运算能力,属于基础题20、(1);(2)①证明见解析;②【解析】
(1)由题意焦距为2,设点,代入椭圆,解得,从而四边形的面积,由此能求出椭圆的标准方程.(2)①由题意,联立直线与椭圆的方程,得,推导出,,,,由此猜想:直线过定点,从而能证明,,三点共线,直线过定点.②由题意设,,,,直线,代入椭圆标准方程:,得,推导出,,由此推导出(定值).【详解】(1)由题意焦距为2,可设点,代入椭圆,得,解得,四边形的面积,,,椭圆的标准方程为.(2)①由题意,联立直线与椭圆的方程,得,,解得,从而,,,同理可得,,猜想:直线过定点,下证之:,,,,三点共线,直线过定点.②为定值,理由如下:由题意设
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 探索2024年《荷塘月色》教学课件的跨界融合
- 《小丑的眼泪》-探索生命的意义
- 2024年5S培训:全面优化工作场所
- 2024年全球经济趋势预测
- 《哭泣的自然》课件中的地球之痛
- 第45届世界技能大赛汽车技术项目全国选拔赛技术工作文件
- 2024年敕勒歌教案:创新教学之路
- 2024年新能源汽车电子EMC电磁兼容设计与测试培训
- 重塑教育格局:2024年《独特的装扮》课件的变革力量
- 2024年音乐课件:《剪羊毛》的创新探索
- 医疗行业伦理委员会成员2023年工作总结
- 脑卒中后吞咽障碍患者进食护理(2023年中华护理学会团体标准)
- DB21T 2885-2023居住建筑节能设计标准
- 遗体防腐整容污染处理设备器械消毒
- 护理质量管理常用工具
- 2022公路工程施工技术方案手册
- 亮化工程可行性研究报告
- 安全生产费用提取使用明细
- (完整版)病例演讲比赛PPT模板
- 直播合作协议
- 社科类课题申报工作辅导报告课件
评论
0/150
提交评论