吉林省白山市第七中学2023年高二数学第一学期期末达标检测试题含解析_第1页
吉林省白山市第七中学2023年高二数学第一学期期末达标检测试题含解析_第2页
吉林省白山市第七中学2023年高二数学第一学期期末达标检测试题含解析_第3页
吉林省白山市第七中学2023年高二数学第一学期期末达标检测试题含解析_第4页
吉林省白山市第七中学2023年高二数学第一学期期末达标检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省白山市第七中学2023年高二数学第一学期期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在等差数列中,,表示数列的前项和,则()A.43 B.44C.45 D.462.已知斜率为1的直线l过椭圆的右焦点,交椭圆于A,B两点,则弦AB的长为()A. B.C. D.3.以下四个命题中,正确的是()A.若,则三点共线B.C.为直角三角形的充要条件是D.若为空间的一个基底,则构成空间的另一个基底4.《张邱建算经》记载:今有女子不善织布,逐日织布同数递减,初日织五尺,末一日织一尺,计织三十日,问第11日到第20日这10日共织布()A.30尺 B.40尺C.6尺 D.60尺5.若关于x的不等式的解集为,则关于x的不等式的解集是()A. B.,或C.,或 D.,或,或6.已知等比数列的公比为,则“”是“是递增数列”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.已知直线的倾斜角为,在轴上的截距为,则此直线的方程为()A. B.C. D.8.已知集合M={0,x},N={1,2},若M∩N={2},则M∪N=()A.{0,x,1,2} B.{2,0,1,2}C.{0,1,2} D.不能确定9.函数在处有极值为,则的值为()A. B.C. D.10.已知向量,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件11.已知函数,则函数在点处的切线方程为()A. B.C. D.12.下列求导不正确的是()A B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.棱长为的正方体的顶点到截面的距离等于__________.14.设椭圆的左,右焦点分别为,,过的直线l与C交于A,B两点(点A在x轴上方),且满足,则直线l的斜率为______.15.古希腊数学家阿波罗尼斯发现:平面内到两个定点,的距离之比为定值的点的轨迹是圆.人们将这个圆称为阿波罗尼斯圆,简称阿氏圆.已知点,,动点满足,记动点的轨迹为曲线,给出下列四个结论:①曲线方程为;②曲线上存在点,使得到点的距离为;③曲线上存在点,使得到点的距离大于到直线的距离;④曲线上存在点,使得到点与点的距离之和为.其中所有正确结论的序号是___________.16.某单位现有三个部门竞岗,甲、乙、丙三人每人只竞选一个部门,设事件A为“三人竞岗部门都不同”,B为“甲独自竞岗一个部门”,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆C的圆心在直线上,圆心到x轴的距离为2,且截y轴所得弦长为(1)求圆C的方程;(2)若圆C上至少有三个不同的点到直线的距离为,求实数k的取值范围18.(12分)已知圆C的圆心C在直线上,且与直线相切于点.(1)求圆C的方程;(2)过点的直线与圆C交于两点,线段的中点为M,直线与直线的交点为N.判断是否为定值.若是,求出这个定值,若不是,说明理由.19.(12分)已知数列为等差数列,,数列满足,且(1)求的通项公式;(2)设,记数列的前项和为,求证:20.(12分)p:函数在区间是递增的;q:方程有实数解.(1)若p为真命题,求m的取值范围;(2)若“”为真,“”为假,求m的取值范围.21.(12分)如图,在直三棱柱中,,,与交于点,为的中点,(1)求证:平面;(2)求证:平面平面22.(10分)已知椭圆的焦距为,左、右焦点分别为,为椭圆上一点,且轴,,为垂足,为坐标原点,且(1)求椭圆的标准方程;(2)过椭圆的右焦点的直线(斜率不为)与椭圆交于两点,为轴正半轴上一点,且,求点的坐标

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据等差数列的性质,求得,结合等差数列的求和公式,即可求解.【详解】由等差数列中,满足,根据等差数列的性质,可得,所以,则.故选:C.2、C【解析】根据题意求得直线l的方程,设,联立直线与椭圆的方程,利用韦达定理求得,再利用弦长公式即可得出答案.【详解】由椭圆知,,所以,所以右焦点坐标为,则直线的方程为,设,联立,消y得,,则,所以.即弦AB长为.故选:C.3、D【解析】利用向量共线的推论可判断A,利用数量积的定义可判断B,利用充要条件的概念可判断C,利用基底的概念可判断D.【详解】对于A,若,,所以三点不共线,故A错误;对于B,因为,故B错误;对于C,由可推出为直角三角形,由为直角三角形,推不出,所以为直角三角形的充分不必要条件是,故C错误;对于D,若为空间的一个基底,则不共面,若不能构成空间的一个基底,设,整理可得,即共面,与不共面矛盾,所以能构成空间的另一个基底,故D正确.故选:D.4、A【解析】由题意可知,每日的织布数构成等差数列,由等差数列的求和公式得解.【详解】由题女子织布数成等差数列,设第日织布为,有,所以,故选:A.5、D【解析】先利用已知一元二次不等式的解集求得参数,再代入所求不等式,利用分式大于零,则分子分母同号,列不等式计算即得结果.【详解】不等式解集为,即的二根是1和2,利用根和系数的关系可知,故不等式即转化成,即,等价于或者,解得或,或者.故解集为,或,或.故选:D.【点睛】分式不等式的解法:(1)先化简成右边为零的形式(或),等价于一元二次不等式(或)再求解即可;(2)先化简成右边为零的形式(或),再利用分子分母同号(或者异号),列不等式组求解即可.6、B【解析】先分析充分性:假设特殊等比数列即可判断;再分析充分性,由条件得恒成立,再对和进行分类讨论即可判断.【详解】先分析充分性:在等比数列中,,所以假设,,所以,等比数列为递减数列,故充分性不成立;分析必要性:若等比数列的公比为,且是递增数列,所以恒成立,即恒成立,当,时,成立,当,时,不成立,当,时,不成立,当,时,不成立,当,时,成立,当,时,不成立,当,时,不恒成立,当,时,不恒成立,所以能使恒成立的只有:,和,,易知此时成立,所以必要性成立.故选:B.7、D【解析】求出直线的斜率,利用斜截式可得出直线的方程.【详解】直线的斜率为,由题意可知,所求直线的方程为.故选:D.8、C【解析】集合M={0,x},N={1,2},若M∩N={2},则.所以.故选C.点睛:集合的交集即为由两个集合的公共元素组成的集合,集合的并集即由两集合的所有元素组成.9、B【解析】根据函数在处有极值为,由,求解.【详解】因为函数,所以,所以,,解得a=6,b=9,=-3,故选:B10、A【解析】根据平面向量垂直的性质,结合平面向量数量积的坐标表示公式、充分性、必要性的定义进行求解判断即可.详解】当时,有,显然由,但是由不一定能推出,故选:A11、C【解析】依据导数几何意义去求函数在点处的切线方程即可解决.【详解】则,又则函数在点处的切线方程为,即故选:C12、C【解析】由导数的运算法则、复合函数的求导法则计算后可判断【详解】A:;B:;C:;D:故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据勾股定理可以计算出,这样得到是直角三角形,利用等体积法求出点到的距离.【详解】解:如图所示,在三棱锥中,是三棱锥的高,,在中,,,,所以是直角三角形,,设点到的距离为,.故A到平面的距离为故答案为:【点睛】本题考查了点到线的距离,利用等体积法求出点到面的距离.是解题的关键.14、【解析】设出直线的方程并与椭圆方程联立,结合根与系数关系以及求得直线的斜率.【详解】椭圆,由于在轴上方且直线的斜率存在,所以直线的斜率不为,设直线的方程为,且,由,消去并化简得,设,,则①,②,由于,所以③,由①②③解得所以直线的方程为,斜率为.故答案为:15、①④【解析】设,根据满足,利用两点间距离公式化简整理,即可判断①是否正确;由①可知,圆上的点到的距离的范围为,进而可判断②是否正确;设,根据题意可知,再根据在曲线上,可得,由此即可判断③是否正确;由椭圆的的定义,可知在椭圆上,再根据椭圆与曲线的位置关系,即可判断④是否正确.【详解】设,因为满足,所以,整理可得:,即,所以①正确;对于②中,由①可知,点在圆的外部,因为到圆心的距离,半径为,所以圆上的点到的距离的范围为,而,所以②不正确;对于③中,假设存在,使得到点的距离大于到直线的距离,又,到直线的距离,所以,化简可得,又,所以,即,故假设不成立,故③不正确;对于④中,假设存在这样的点,使得到点与点的距离之和为,则在以点与点为焦点,实轴长为的椭圆上,即在椭圆上,易知椭圆与曲线有交点,故曲线上存在点,使得到点与点的距离之和为;所以④正确.故答案为:①④.16、##0.5【解析】根据给定条件求出事件B和AB的概率,再利用条件概率公式计算作答.【详解】依题意,,,所以.故答案:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)或;(2).【解析】(1)设圆心为,由题意及圆的弦长公式即可列方程组,解方程组即可;(2)由题意可将问题转化为圆心到直线l:的距离,解不等式即可.【详解】解:(1)设圆心为,半径为r,根据题意得,解得,所以圆C的方程为或(2)由(1)知圆C的圆心为或,半径为,由圆C上至少有三个不同的点到直线l:的距离为,可知圆心到直线l:的距离即,所以,解得所以直线l斜率的取值范围为18、(1)(2)【解析】(1)设过点且与直线垂直的直线为,将代入直线方程,即可求出,再与求交点坐标,得到圆心坐标,再求出半径,即可得解;(2)分直线的斜率存在与不存在两种情况讨论,当斜率不存在直接求出、的坐标,即可求出,当直线的斜率存在,设直线为、、,联立直线与圆的方程,消元列出韦达定理,即可表示出的坐标,再求出的坐标,即可表示出、,即可得解;【小问1详解】解:设过点且与直线垂直的直线为,则,解得,即,由,解得,即圆心坐标为,所以半径,所以圆的方程为【小问2详解】解:当直线的斜率存在时,设过点的直线为,所以,消去得,设、,则,,所以,所以的中点,由解得,即,所以,,所以;当直线的斜率不存在时,直线的方程为,由,解得或,即、,所以,所以又解得,即,所以,所以,综上可得.19、(1);(2)证明见解析.【解析】(1)求出的值,可求得等差数列的公差,进而可求得数列的通项公式,再由前项和与通项的关系可求得的表达式,可求得,然后对是否满足在时的表达式进行检验,综合可得出数列的通项公式;(2)求得,利用裂项求和法可求得的表达式,利用不等式的性质和数列的单调性可证得所证不等式成立.【小问1详解】解:因为,,所以,因为,,所以,设数列公差为,则,所以,当时,由,可得,所以,所以,因为满足,所以,对任意的,【小问2详解】证明:因为,所以,因为,所以,因为,所以,故数列单调递增,当时,,所以20、(1)(2)或【解析】(1)依题意在区间上恒成立,参变分离可得在区间上恒成立,再利用基本不等式计算可得;(2)首先求出命题为真时参数的取值范围,再根据“”为真,“”为假,即可得到真假,或假真,从而得到不等式组,解得即可;【小问1详解】解:为真命题,即函数在区间上是递增的∴在区间上恒成立,∴在区间上恒成立,∵,当且仅当时等号成立,∴的取值范围为.【小问2详解】解:为真命题,即方程有实数解∴即∴或∵“”为真,“”为假∴真假,或假真∴或,解得或,∴的取值范围为或;21、(1)证明见解析(2)证明见解析【解析】(1)根据直棱柱的性质、平行四边形的性质,结合三角形中位线定理、线面平行的判定定理进行证明即可;(2)根据直棱柱的性质、菱形的判定定理和性质,结合线面垂直的判定定理、面面垂直的判定定理进行证明即可.【小问1详解】在直三棱柱中,,且四边形平行四边形,又,则为的中点,又为的中点,故,即:,且平面,平面,所以平面;【小问2详解】在直三棱柱中,平面,平面,则,且,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论