版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省荆、荆、襄、宜四地七校考试联盟2023年高二上数学期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知向量,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件2.已知正实数x,y满足4x+3y=4,则的最小值为()A. B.C. D.3.已知,,,,则()A. B.C. D.4.已知函数,若,,则实数的取值范围是A. B.C. D.5.已知数列满足,则()A.2 B.C.1 D.6.如图是一水平放置的青花瓷.它的外形为单叶双曲面,可看成是双曲线的一部分绕其虚轴旋转所形成的曲面,且其外形上下对称.花瓶的最小直径为,瓶口直径为,瓶高为,则该双曲线的虚轴长为()A. B.C. D.457.已知空间向量,且与垂直,则等于()A.-2 B.-1C.1 D.28.如图,在长方体中,,,则直线和夹角的余弦值为()A. B.C. D.9.已知椭圆的一个焦点坐标是,则()A.5 B.2C.1 D.10.设等差数列,的前n项和分别是,若,则()A. B.C. D.11.下列关于函数及其图象的说法正确的是()A.B.最小正周期为C.函数图象的对称中心为点D.函数图象的对称轴方程为12.设为数列的前n项和,且,则=()A.26 B.19C.11 D.9二、填空题:本题共4小题,每小题5分,共20分。13.过椭圆的右焦点作两条相互垂直的直线m,n,直线m与椭圆交于A,B两点,直线n与椭圆交于C,D两点,若.则下列方程①;②;③;④.其中可以作为直线AB的方程的是______(写出所有正确答案的序号)14.已知抛物线与直线交于D,E两点,若(点O为坐标原点)的面积为16,则抛物线的方程为______;过焦点F的直线l与抛物线交于A,B两点,则______15.已知数列,点在函数的图象上,则数列的前10项和是______16.若正实数满足则的最小值为________________________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知正三棱柱底面边长为,是上一点,是以为直角顶点的等腰直角三角形,(1)证明:是的中点;(2)求二面角的大小18.(12分)在平面直角坐标系xOy中,椭圆C的参数方程为(θ为参数),直线l的参数方程为(t为参数)(Ⅰ)写出椭圆C的普通方程和直线l的倾斜角;(Ⅱ)若点P(1,2),设直线l与椭圆C相交于A,B两点,求|PA|·|PB|的值19.(12分)有三个条件:①数列的任意相邻两项均不相等,,且数列为常数列,②,③,,中,从中任选一个,补充在下面横线上,并回答问题已知数列的前n项和为,______,求数列的通项公式和前n项和20.(12分)已知数列满足且(1)求证:数列为等差数列,并求数列的通项公式;(2)设,求数列的前n项和为.21.(12分)我们知道,装同样体积的液体容器中,如果容器的高度一样,那么侧面所需的材料就以圆柱形的容器最省.所以汽油桶等装液体的容器大都是圆柱形的,某卧式油罐如图1所示,它垂直于轴的截面如图2所示,已知截面圆的半径是1米,弧的长为米表示劣弧与弦所围成阴影部分的面积.(1)请写出函数表达式;(2)用求导的方法证明.22.(10分)如图,点О是正四棱锥的底面中心,四边形PQDO矩形,(1)点B到平面APQ的距离:(2)设E为棱PC上的点,且,若直线DE与平面APQ所成角的正弦值为,试求实数的值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据平面向量垂直的性质,结合平面向量数量积的坐标表示公式、充分性、必要性的定义进行求解判断即可.详解】当时,有,显然由,但是由不一定能推出,故选:A2、A【解析】将4x+3y=4变形为含2x+1和3y+2的等式,即2(2x+1)+(3y+2)=8,再由换元法、基本不等式换“1”的代换求解即可【详解】由正实数x,y满足4x+3y=4,可得2(2x+1)+(3y+2)=8,令a=2x+1,b=3y+2,可得2a+b=8,∴,即,当且仅当时取等号,∴的最小值为.故选:A3、D【解析】根据对数函数的性质和幂函数的单调性可得正确的选项.【详解】因为,故,故,又,在上的增函数,故,故,故选:D.4、A【解析】函数,若,,可得,解得或,则实数的取值范围是,故选A.5、D【解析】首先得到数列的周期,再计算的值.【详解】由条件,可知,两式相加可得,即,所以数列是以周期为的周期数列,.故选:D6、C【解析】设双曲线方程为,,由已知可得,并求得双曲线上一点的坐标,把点的坐标代入双曲线方程,求解,即可得到双曲线的虚轴长【详解】设点是双曲线与截面的一个交点,设双曲线的方程为:,花瓶的最小直径,则,由瓶口直径为,瓶高为,可得,故,解得,该双曲线的虚轴长为故选:7、B【解析】直接利用空间向量垂直的坐标运算即可解决.【详解】∵∴∴,解得,故选:B.8、D【解析】如图建立空间直角坐标系,分别求出的坐标,由空间向量夹角公式即可求解.【详解】如图:以为原点,分别以,,所在的直线为,,轴建立空间直角坐标系,则,,,,所以,,所以,所以直线和夹角的余弦值为,故选:D.9、C【解析】根据题意椭圆焦点在轴上,且,将椭圆方程化为标准形式,从而得出,得出答案.【详解】由焦点坐标是,则椭圆焦点在轴上,且将椭圆化为,则由,焦点坐标是,则,解得故选:C10、C【解析】结合等差数列前项和公式求得正确答案.【详解】依题意等差数列,的前n项和分别是,由于,故可设,,当时,,,所以,所以.故选:C11、D【解析】化简,利用正弦型函数的性质,依次判断,即可【详解】∵∴,A选项错误;的最小正周期为,B选项错误;令,则,故函数图象的对称中心为点,C选项错误;令,则,所以函数图象的对称轴方程为,D选项正确故选:D12、D【解析】先求得,然后求得.【详解】依题意,当时,,当时,,,所以,所以.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、①②【解析】①②结合椭圆方程得到与椭圆参数的关系,即可判断;③④联立直线与椭圆方程,利用弦长公式求,即可判断.【详解】由题设,且右焦点为,①时直线,故,则符合题设;②时,同①知:符合题设;③时直线,联立直线AB与椭圆方程并整理得:,则,同理可得,则,不合题设;④时,同③分析知:,不合题设;故答案为:①②.14、①.②.1【解析】利用的面积列方程,化简求得的值,从而求得抛物线方程.将的斜率分成存在和不存在两种情况进行分类讨论,结合根与系数关系求得.【详解】依题意可知,,所以,解得.所以抛物线方程为.焦点,当直线的斜率不存在时,直线的方程为,,即,此时.当直线的斜率存在且不为时,设直线的方程为,由消去并化简得,,设,则,结合抛物线的定义可知.故答案为:;15、【解析】将点代入可得,从而得,再由裂项相消法可求解.【详解】由题意有,所以,所以数列的前10项和为:.故答案为:16、【解析】利用基本不等式即可求解.【详解】,,又,,,当且仅当即,等号成立,.故答案为:【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)根据正棱柱的性质,结合线面垂直的判定定理、直角三角形的性质、正三角形的性质进行证明即可;(2)根据线面垂直的判定定理和性质,结合二面角的定义进行求解即可.【小问1详解】证明:在正三棱柱中,平面,平面,则,又是以为直角顶点的等腰直角三角形,则,且,平面,故平面,而平面,所以,又为正三角形,所以为的中点;【小问2详解】在正中,取的中点为,则,又平面,则,且,平面,故平面,取的中点为,且的中点为,则,故平面,而平面,所以,在等腰直角中,取的中点为,则,,平面,所以平面,而平面,所以,故为二面角平面角,又,则,,所以在中,,即:,故二面角的大小为.:18、(I)见解析;(Ⅱ).【解析】(Ⅰ)利用平方法消去θ得到椭圆C的普通方程为,根据直线参数方程的几何意义求出直线的斜率,从而可得结果;(Ⅱ)把直线的方程,代入中,利用直线参数方程的几何意义求出直线的斜率结合韦达定理可得结果.试题解析:(Ⅰ)消去θ得到椭圆C的普通方程为∵直线的斜率为,∴直线l的倾斜角为(Ⅱ)把直线的方程,代入中,得即,∴t1·t2=4,即|PA|·|PB|=419、;【解析】选①,由数列为常数列可得,由此可求,根据任意相邻两项均不相等可得,由此证明数列为等比数列,并求出数列的通项公式,利用分组求和法求数列的前n项和为,选②由取可求,再取与原式相减可得,由此证明数列为等比数列,并求出数列的通项公式,利用分组求和法求数列的前n项和为,选③由取与原式相减可得,取可求,由此可得,故,由此证明数列为等比数列,并求出数列的通项公式,利用分组求和法求数列的前n项和为,【详解】解:选①:因为,数列为常数列,所以,解得或,又因为数列的任意相邻两项均不相等,且,所以数列为2,-1,2,-1,2,-1……,所以,即,所以,又,所以是以为首项,公比为-1的等比数列,所以,即;所以选②:因为,易知,,所以两式相减可得,即,以下过程与①相同;选③:由,可得,又,时,,所以,因为,所以也满足上式,所以,即,以下过程与①相同20、(1)证明见解析,;(2).【解析】(1)对递推公式进行变形,结合等差数列的定义进行求解即可;(2)运用裂项相消法进行求解即可.【小问1详解】因为,且,所以即,所以数列是公差为2的等差数列.又,所以即;【小问2详解】由(1)得,所以.故.21、(1),(2)证明见解析【解析】(1)由弧长公式得,根据即可求解;(2)利用导数判断出在上单调递增,即可证明.【小问1详解】由弧长公式得,于是,【小问2详解】cos,显然在上单调递增,于是.22、(1)(2)或【解析】(1)以三棱锥等体积法求点到面距离,思路简单快捷.(2)由直线DE与平面APQ所成角的正
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年新高一物理初升高衔接《运动与力的关系》含答案解析
- 《居室空间设计风格》课件
- 书柜课件教学课件
- 《演讲技能培训》课件
- 相机镜头产业深度调研及未来发展现状趋势
- 《网谍舆情监测系统》课件
- 化妆用防晒油市场洞察报告
- 人用抗生素市场发展现状调查及供需格局分析预测报告
- 《GRP时间管理》课件
- 网络路由器产业规划专项研究报告
- 《小学教育概统》课件
- 工商企业等社会资本流转农村土地经营权申请表、农村土地经营权流转意向协议书示范文本模板
- 加热炉检修规程范本
- 固定资产清查合同
- 河道水体生态修复治理施工方案完整
- GH/T 1420-2023野生食用菌保育促繁技术规程松茸
- 职高学校班级家长会课件
- 第2课+新航路开辟后的食物物种交流+导学案 高二历史统编版(2019)选择性必修2经济与社会生活
- IATF16949第五版DFMEA管理程序+潜在失效模式及后果分析程序
- 中药对妇科疾病的作用研究
- 长沙市长郡双语实验学校人教版七年级上册期中生物期中试卷及答案
评论
0/150
提交评论