湖南省长沙同升湖实验学校2023年高二上数学期末质量跟踪监视模拟试题含解析_第1页
湖南省长沙同升湖实验学校2023年高二上数学期末质量跟踪监视模拟试题含解析_第2页
湖南省长沙同升湖实验学校2023年高二上数学期末质量跟踪监视模拟试题含解析_第3页
湖南省长沙同升湖实验学校2023年高二上数学期末质量跟踪监视模拟试题含解析_第4页
湖南省长沙同升湖实验学校2023年高二上数学期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省长沙同升湖实验学校2023年高二上数学期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在二项式的展开式中,前三项的系数成等差数列,把展开式中所有的项重新排成一列,则有理项互不相邻的概率()A. B.C. D.2.椭圆的焦点坐标为()A.和 B.和C.和 D.和3.设点P是双曲线,与圆在第一象限的交点,、分别是双曲线的左、右焦点,且,则此双曲线的离心率为()A. B.C. D.34.已知F是抛物线x2=y的焦点,A、B是该抛物线上的两点,|AF|+|BF|=3,则线段AB的中点到x轴的距离为()A. B.C.1 D.5.已知函数,则()A.3 B.C. D.6.如图,棱长为1的正方体中,为线段上的动点,则下列结论错误的是A.B.平面平面C.的最大值为D.的最小值为7.在棱长为2的正方体中,为线段的中点,则点到直线的距离为()A. B.C. D.8.已知直线与圆相交于,两点,则的取值范围为()A. B.C. D.9.已知直线方程为,则其倾斜角为()A.30° B.60°C.120° D.150°10.已知抛物线,,点在抛物线上,记点到直线的距离为,则的最小值是()A.5 B.6C.7 D.811.动点P,Q分别在抛物线和圆上,则的最小值为()A. B.C. D.12.已知等差数列,,,则数列的前项和为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,,若,则______14.定义点到曲线的距离为该点与曲线上所有点之间距离的最小值,则点到曲线距离为___________.15.已知抛物线的焦点为F,若抛物线上一点P到x轴的距离为2,则|PF|的值为___________.16.已知点F是抛物线的焦点,点,点P为抛物线上的任意一点,则的最小值为_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列是公比为正数的等比数列,且,.(1)求数列的通项公式;(2)若,求数列的前项和.18.(12分)在平面直角坐标系xOy中,圆O以原点为圆心,且经过点.(1)求圆O的方程;(2)若直线与圆O交于两点A,B,求弦长.19.(12分)已知命题:对任意实数都有恒成立;命题:关于的方程有实数根(1)若命题为假命题,求实数的取值范围;(2)如果“”为真命题,且“”为假命题,求实数的取值范围20.(12分)已知P,Q的坐标分别为,,直线PM,QM相交于点M,且它们的斜率之积是.设点M的轨迹为曲线C.(1)求曲线的方程;(2)设为坐标原点,圆的半径为1,直线:与圆相切,且与曲线交于不同的两点A,B.当,且满足时,求面积的取值范围.21.(12分)如图,在正方体中,分别是,的中点.求证:(1)平面;(2)平面平面.22.(10分)已知复数,其中i是虚数单位,m为实数(1)当复数z为纯虚数时,求m的值;(2)当复数在复平面内对应的点位于第三象限时,求m的取值范围

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】先根据前三项的系数成等差数列求,再根据古典概型概率公式求结果【详解】因为前三项的系数为,,,当时,为有理项,从而概率为.故选:A.2、D【解析】本题是焦点在x轴的椭圆,求出c,即可求得焦点坐标.【详解】,可得焦点坐标为和.故选:D3、C【解析】根据几何关系得到是直角三角形,然后由双曲线的定义及勾股定理可求解.【详解】点到原点的距离为,又因为在中,,所以是直角三角形,即.由双曲线定义知,又因为,所以.在中,由勾股定理得,化简得,所以.故选:C.4、B【解析】根据抛物线的方程求出准线方程,利用抛物线的定义抛物线上的点到焦点的距离等于到准线的距离,列出方程求出,的中点纵坐标,求出线段的中点到轴的距离【详解】解:抛物线的焦点准线方程,设,,,解得,线段的中点纵坐标为,线段的中点到轴的距离为,故选:B【点睛】本题考查解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离,属于基础题5、B【解析】由导数运算法则求出导发函数,然后可得导数值【详解】由题意,所以故选:B6、C【解析】∵,,∴面,面,∴,A正确;∵平面即为平面,平面即为平面,且平面,∴平面平面,∴平面平面,∴B正确;当时,为钝角,∴C错;将面与面沿展成平面图形,线段即为的最小值,在中,,利用余弦定理解三角形得,即,∴D正确,故选C考点:立体几何中的动态问题【思路点睛】立体几何问题的求解策略是通过降维,转化为平面几何问题,具体方法表现为:

求空间角、距离,归到三角形中求解;2.对于球的内接外切问题,作适当的截面,既要能反映出位置关系,又要反映出数量关系;求曲面上两点之间的最短距离,通过化曲为直转化为同一平面上两点间的距离7、D【解析】根据正方体的性质,在直角△中应用等面积法求到直线的距离.【详解】由正方体的性质:面,又面,故,直角△中,若到上的高为,∴,而,,,∴.故选:D.8、C【解析】求得直线恒过的定点,找出弦长取得最值的状态,利用弦长公式求解即可.【详解】因直线方程为:,整理得,故该直线恒过定点,又,故点在圆内,又圆的圆心为则,此时直线过圆心;当直线与直线垂直时,取得最小值,此时.故的取值范围为.故选:.9、D【解析】由直线方程可得斜率,根据斜率与倾斜角的关系即可求倾斜角大小.【详解】由题设,直线斜率,若直线的倾斜角为,则,∵,∴.故选:D10、D【解析】先求出抛物线的焦点和准线,利用抛物线的定义将转化为的距离,即可求解.【详解】由已知得抛物线的焦点为,准线方程为,设点到准线的距离为,则,则由抛物线的定义可知∵,当点、、三点共线时等号成立,∴,故选:.11、B【解析】设,根据两点间距离公式,先求得P到圆心的最小距离,根据圆的几何性质,即可得答案.【详解】设,圆化简为,即圆心为(0,4),半径为,所以点P到圆心的距离,令,则,令,,为开口向上,对称轴为的抛物线,所以的最小值为,所以,所以的最小值为.故选:B12、A【解析】求出通项,利用裂项相消法求数列的前n项和.【详解】因为等差数列,,,所以,所以,所以数列的前项和为故B,C,D错误.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据空间向量垂直得到等量关系,求出答案.【详解】由题意得:,解得:故答案为:14、2【解析】设出曲线上任意一点,利用两点间距离公式表达出,利用基本不等式求出最小值.【详解】当时,显然不成立,故,此时,设曲线任意一点,则,其中,当且仅当,即时等号成立,此时即为最小值.故答案为:215、3【解析】先求出抛物线的焦点坐标和准线方程,再利用抛物线的定义可求得答案【详解】抛物线的焦点为,准线为,因为抛物线上一点P到x轴的距离为2,所以由抛物线的定义可得,故答案为:316、3【解析】根据抛物线的定义可求最小值.【详解】如图,过作抛物线准线的垂线,垂足为,连接,则,当且仅当共线时等号成立,故的最小值为3,故答案为:3.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据题意,通过解方程求出公比,即可求解;(2)根据题意,求出,结合组合法求和,即可求解.小问1详解】根据题意,设公比为,且,∵,,∴,解得或(舍),∴.【小问2详解】根据题意,得,故,因此.18、(1)(2)【解析】(1)根据两点距离公式即可求半径,进而得圆方程;(2)根据直线与圆的弦长公式即可求解【小问1详解】由,所以圆O的方程为;【小问2详解】由点O到直线的距离为所以弦长19、(1);(2)【解析】(1)先分别求出命题为真命题和命题为真命题时参数的范围,则可得当命题为假命题,实数的取值范围(2)由“”为真命题,且“”为假命题,则命题,一真一假,再分真,且假,和真,且假两种情况分别求出参数的范围,再综合得到答案.【详解】命题为真命题:对任意实数都有恒成立或;命题为真命题:关于的方程有实数根;(1)命题为假命题,则实数取值范围(2)由“”为真命题,且“”为假命题,则命题,一真一假.如果真,且假,有,且,则如果真,且假,有或,且,则综上,实数的取值范围为20、(1)(2)【解析】【小问1详解】设点,则,整理得曲线的方程:【小问2详解】因为圆的半径为1,直线:与圆相切,则,,设,将代入得,,,,,所以,,因为,令,在上单调减,,所以21、证明见解析【解析】(1)连接,根据线面平行的判定定理,即可证明结论成立;(2)连接,,先由线面平行的判定定理,得到平面,再由(1)的结果,结合面面平行的判定定理,即可证明结论成立.【详解】(1)如图,连接.∵四边形是正方形,是的中点,∴是的中点.又∵是的中点,∴.∵平面,平面,∴平面.(2)连接,,∵四边形是正方形,是的中点,∴是的中点.又∵是中点,∴.∵平面平面,∴平面.由(1)知平面,且,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论