




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省唐山市2023-2024学年高二上数学期末质量检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“”是“直线和直线垂直”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.已知双曲线,且三个数1,,9成等比数列,则下列结论正确的是()A.的焦距为 B.的渐近线方程为C.的离心率为 D.的虚轴长为3.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,他所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,而是逐项差数之差或者高次差相等.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有一个高阶等差数列,其前7项分别为1,5,11,21,37,61,95,则该数列的第8项为()A.99 B.131C.139 D.1414.函数为的导函数,令,则下列关系正确的是()A. B.C. D.5.抛掷两枚质地均匀的硬币,设事件“第一枚硬币正面朝上”,事件“第二枚硬币反面朝上”,则下列结论中正确的为()A.与互为对立事件 B.与互斥C.与相等 D.6.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块 B.3474块C.3402块 D.3339块7.已知随机变量服从正态分布,且,则()A.0.6 B.0.4C.0.3 D.0.28.为了了解某地区的名学生的数学成绩,打算从中抽取一个容量为的样本,现用系统抽样的方法,需从总体中剔除个个体,在整个过程中,每个个体被剔除的概率和每个个体被抽取的概率分别为()A. B.C. D.9.已知,数列,,,与,,,,都是等差数列,则的值是()A. B.C. D.10.中,,,分别为三个内角,,的对边,若,,,则()A. B.C. D.11.“”是“函数在上无极值”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.若函数的导函数在区间上是减函数,则函数在区间上的图象可能是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设圆,圆,则圆有公切线___________条.14.已知数列的前n项和为,则取得最大值时n的值为__________________15.阿波罗尼斯与阿基米德、欧几里得被称为亚历山大时期的数学三巨匠.“阿波罗尼斯圆”是他的代表成果之一:平面上动点P到两定点A,B的距离之比满足(且,t为常数),则点的轨迹为圆.已知在平面直角坐标系中,,,动点P满足,则P点的轨迹为圆,该圆方程为_________;过点的直线交圆于两点,且,则_________16.已知是数列的前n项和,且,则________;数列的通项公式________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列满足且.(1)证明数列是等比数列;(2)设数列满足,,求数列的通项公式.18.(12分)已知数列{an}的首项a1=1,且an+1=(n∈N*).(1)证明:数列是等比数列;(2)设bn=-,求数列{bn}的前n项和Sn.19.(12分)已知直线.(1)若,求直线与直线交点坐标;(2)若直线与直线垂直,求a的值.20.(12分)已知函数,求函数在上的最大值与最小值.21.(12分)已知抛物线:上的点到其准线的距离为5.(1)求抛物线的方程;(2)已知为原点,点在抛物线上,若的面积为6,求点的坐标.22.(10分)已知二次函数,令,解得.(1)求二次函数的解析式;(2)当关于的不等式恒成立时,求实数的范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】因为直线和直线垂直,所以或,再根据充分必要条件的定义判断得解.【详解】因为“直线和直线垂直,所以或.当时,直线和直线垂直;当直线和直线垂直时,不一定成立.所以是直线和直线垂直的充分不必要条件,故选:A2、D【解析】先求得的值,然后根据双曲线的知识对选项进行分析,从而确定正确答案.【详解】方程表示双曲线,则,成等比数列,则,所以双曲线方程为,所以,故双曲线的焦距为,A选项错误.渐近线方程为,B选项错误.离心率,C选项错误.虚轴长,D选项正确.故选:D3、D【解析】根据题中所给高阶等差数列定义,找出其一般规律即可求解.【详解】设该高阶等差数列的第8项为,根据所给定义,用数列的后一项减去前一项得到一个数列,得到的数列也用后一项减去前一项得到一个数列,即得到了一个等差数列,如图:由图可得,则.故选:D4、B【解析】求导后,令,可求得,再利用导数可得为减函数,比较的大小后,根据为减函数可得答案.【详解】由题意得,,,解得,所以所以,所以为减函数因为,所以,故选:B【点睛】关键点点睛:比较大小的关键是知道的单调性,利用导数可得的单调性.5、D【解析】利用互斥事件和对立事件的定义分析判断即可【详解】因为抛掷两枚质地均匀的硬币包含第一枚硬币正面朝上第二枚硬币正面朝上,第一枚硬币正面朝上第二枚硬币反面朝上,第一枚硬币反面朝上第二枚硬币正面朝上,第一枚硬币反面朝上第二枚硬币反面朝上,4种情况,其中事件包含第一枚硬币正面朝上第二枚硬币正面朝上,第一枚硬币正面朝上第二枚硬币反面朝上2种情况,事件包含第一枚硬币正面朝上第二枚硬币反面朝上,第一枚硬币反面朝上第二枚硬币反面朝上2种情况,所以与不互斥,也不对立,也不相等,,所以ABC错误,D正确,故选:D6、C【解析】第n环天石心块数为,第一层共有n环,则是以9为首项,9为公差的等差数列,设为的前n项和,由题意可得,解方程即可得到n,进一步得到.【详解】设第n环天石心块数为,第一层共有n环,则是以9为首项,9为公差的等差数列,,设为的前n项和,则第一层、第二层、第三层的块数分别为,因为下层比中层多729块,所以,即即,解得,所以.故选:C【点晴】本题主要考查等差数列前n项和有关的计算问题,考查学生数学运算能力,是一道容易题.7、A【解析】根据正态曲线的对称性即可求得答案.【详解】由题意,正态曲线的对称轴为,则与关于对称轴对称,于是.故选:A.8、D【解析】根据每个个体被抽取的概率都是相等的、被剔除的概率也都是相等的,分别由剔除的个数和抽取的样本容量除以总体个数即可求解.【详解】根据系统抽样的定义和方法可知:每个个体被抽取的概率都是相等的,每个个体被剔除的概率也都是相等的,所以每个个体被剔除的概率为,每个个体被抽取的概率为,故选:D.9、A【解析】根据等差数列的通项公式,分别表示出,,整理即可得答案.【详解】数列,,,和,,,,各自都成等差数列,,,,故选:A10、C【解析】利用正弦定理求解即可.【详解】,,,由正弦定理可得,解得,故选:C.11、B【解析】根据极值的概念,可知函数在上无极值,则方程的,再根据充分、必要条件判断,即可得到结果.【详解】由题意,可得,若函数在上无极值,所以对于方程,,解得.所以“”是“函数在上无极值”的必要不充分条件.故选:B.12、A【解析】根据导数概念和几何意义判断【详解】由题意得,图象上某点处的切线斜率随增大而减小,满足要求的只有A故选:A二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】将圆转化成标准式,结合圆心距判断两圆位置关系,进而求解.【详解】由题意得,圆:,圆:,∴,∴与相交,有2条公切线.故答案为:214、①.13②.##3.4【解析】由题可得利用函数的单调性可得取得最大值时n的值,然后利用,即求.【详解】∵,∴当时,单调递减且,当时,单调递减且,∴时,取得最大值,∴.故答案为:13;.15、①.②.【解析】设,根据可得圆的方程,利用垂径定理可求.【详解】设,则,整理得到,即.因为,故为的中点,过圆心作的垂线,垂足为,则为的中点,则,故,解得,故答案为:,.16、①.②.【解析】当时,,推导出,从而数列是从第二项起,公比为的等比数列,进而能求出数列的通项公式,即可求得答案.【详解】为数列的前项和,①时,②①②,得:,,,,数列的通项公式为.故答案为:;.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)根据题意可得,根据等比数列的定义,即可得证;(2)由(1)可得,可得,利用累加法即可求得数列的通项公式.【详解】(1)因为,所以,即,所以是首项为1公比为3的等比数列(2)由(1)可知,所以因为,所以……,,各式相加得:,又,所以,又当n=1时,满足上式,所以18、(1)证明见解析.(2)2-.【解析】(1)根据递推公式,得到,推出,即可证明数列是等比数列;(2)先由(1)求出,即bn=,再错位相减法,即可求出数列的和.【小问1详解】(1)证明:因为an+1=,所以==+,所以-=-=,又a1-≠0,所以数列为以-=为首项,为公比的等比数列.【小问2详解】解:由(1)可得=+,所以bn=,所以Sn=+++…+,①所以Sn=++…++,②①-②得,Sn=++…+-=-,解得Sn=2-.19、(1)(2)【解析】(1)联立两直线方程,解方程组即可得解;(2)根据两直线垂直列出方程,解之即可得出答案.【小问1详解】解:当时,直线,联立,解得,即交点坐标为;【小问2详解】解:直线与直线垂直,则,解得.20、最大值为,最小值为【解析】利用导数可求得的单调性,进而可得极值,比较极值和端点值的大小即可求解.【详解】由可得:,则当时,;当时,;所以在上单调递减,在上单调递增,,又因为,,所以,综上所述:函数在上的最大值为,最小值为.21、(1)(2)或【解析】(1)结合抛物线的定义求得,由此求得抛物线的方程.(2)设,根据三角形的面积列方程,求得的值,进而求得点的坐标.【小问1详解】由抛物线的方程可得其准线方程,依抛物线的性质得,解得.∴抛物线的方程为.【小问2详解】将代入,得.所以,直线的方程为,即.设,则点到直线的距离,又,由题意得,解得或.∴点的坐标是或.22、(1);(2).【解析】(1)利用一元
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人装修委托书
- 双方设备合作合同范本
- 南瓜订货合同范例
- 断层解剖复习题+答案
- 合伙买车合作协议合同范例
- 七年级下学期语文总结
- 兼职游泳教练合同范本
- 保洁合同范本(完美版)
- 厂里员工租房合同范本
- 《赠刘景文》和《山行》古诗的教学反思
- 2025-2030年中国pcb行业竞争格局及未来投资趋势分析报告新版
- 2025年年食堂工作总结和年工作计划例文
- 船舶制造设施安全生产培训
- 全国驾驶员考试(科目一)考试题库下载1500道题(中英文对照版本)
- TSG 07-2019电梯安装修理维护质量保证手册程序文件制度文件表单一整套
- 2025深圳劳动合同下载
- 标准和计量管理制度范文(2篇)
- 孕前口腔护理保健
- 《民航服务与沟通学》课件-第1讲 服务与民航服务的概念
- 大型养路机械司机(打磨车)高级工技能鉴定考试题库(含答案)
- 车辆使用不过户免责协议书范文范本
评论
0/150
提交评论