广东汕头潮阳区2024届高二数学第一学期期末预测试题含解析_第1页
广东汕头潮阳区2024届高二数学第一学期期末预测试题含解析_第2页
广东汕头潮阳区2024届高二数学第一学期期末预测试题含解析_第3页
广东汕头潮阳区2024届高二数学第一学期期末预测试题含解析_第4页
广东汕头潮阳区2024届高二数学第一学期期末预测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东汕头潮阳区2024届高二数学第一学期期末预测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若在1和16中间插入3个数,使这5个数成等比数列,则公比为()A. B.2C. D.42.已知向量,,则等于()A. B.C. D.3.已知、分别为双曲线的左、右焦点,且,点P为双曲线右支一点,为的内心,若成立,给出下列结论:①点的横坐标为定值a;②离心率;③;④当轴时,上述结论正确的是()A.①② B.②③C.①②③ D.②③④4.已知直线和互相平行,则实数的取值为()A或3 B.C. D.1或5.双曲线的左、右焦点分别为、,过点且斜率为的直线与双曲线的左右两支分别交于P、Q两点,若,则双曲线C的离心率为()A. B.C. D.6.已知动直线的倾斜角的取值范围是,则实数m的取值范围是()A. B.C. D.7.已知椭圆和双曲线有共同的焦点,分别是它们的在第一象限和第三象限的交点,且,记椭圆和双曲线的离心率分别为,则等于()A.4 B.2C.2 D.38.已知1与5的等差中项是,又1,,,8成等比数列,公比为,则的值为()A.5 B.4C.3 D.69.如图,已知正方体,点P是棱中点,设直线为a,直线为b.对于下列两个命题:①过点P有且只有一条直线l与a、b都相交;②过点P有且只有两条直线l与a、b都成角.以下判断正确的是()A.①为真命题,②为真命题 B.①为真命题,②为假命题C.①为假命题,②为真命题 D.①为假命题,②为假命题10.设,向量,,,且,,则()A. B.C.3 D.411.过双曲线右焦点F作双曲线一条渐近线的垂线,垂足为A,与另一条渐近线交于点B,若,则双曲线C的离心率为()A.或 B.2或C.或 D.2或12.“不到长城非好汉,屈指行程二万”,出自毛主席1935年10月所写的一首词《清平乐·六盘山》,反映了中华民族的一种精神气魄,一种积极向上的奋斗精神.从数学逻辑角度分析,其中“好汉”是“到长城”的()A.充分条件 B.必要条件C.充要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.设P为圆上一动点,Q为直线上一动点,O为坐标原点,则的最小值为___14.已知离心率为,且对称轴都在坐标轴上的双曲线C过点,过双曲线C上任意一点P,向双曲线C的两条渐近线分别引垂线,垂足分别是A,B,点O为坐标原点,则四边形OAPB的面积为______15.已知抛物线C的方程为:,F为抛物线C的焦点,倾斜角为的直线过点F交抛物线C于A、B两点,则线段AB的长为________16.已知椭圆的两个焦点分别为,,,点在椭圆上,若,且的面积为4,则椭圆的标准方程为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的前n项和为,,且.(1)求数列的通项公式;(2)在与之间插入n个数,使这个数组成一个公差为的等差数列,求证:.18.(12分)在二项式的展开式中;(1)若,求常数项;(2)若第4项的系数与第7项的系数比为,求:①二项展开式中的各项的二项式系数之和;②二项展开式中各项的系数之和19.(12分)若双曲线-=1(a>0,b>0)的焦点坐标分别为和,且该双曲线经过点P(3,1)(1)求双曲线的方程;(2)若F是双曲线的右焦点,Q是双曲线上的一点,过点F,Q的直线l与y轴交于点M,且,求直线l的斜率20.(12分)已知数列满足,,,.从①,②这两个条件中任选一个填在横线上,并完成下面问题.(1)写出、,并求数列的通项公式;(2)求数列的前项和.21.(12分)如图,在四棱锥中,底面为矩形,平面平面,.(1)证明:平面平面;(2)若,为棱的中点,,,求二面角的余弦值22.(10分)已知函数(1)讨论函数的单调性;(2)若函数有两个零点,,证明:

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据等比数列的通项得:,从而可求出.【详解】解:成等比数列,∴根据等比数列的通项得:,,故选:A.2、C【解析】根据题意,结合空间向量的坐标运算,即可求解.【详解】由,,得,因此.故选:C.3、C【解析】利用双曲线的定义、几何性质以及题意对选项逐个分析判断即可【详解】对于①,设内切圆与的切点分别为,则由切线长定理可得,因为,,所以,所以点的坐标为,所以点的横坐标为定值a,所以①正确,对于②,因为,所以,化简得,即,解得,因为,所以,所以②正确,对于③,设的内切圆半径为,由双曲线的定义可得,,因为,,所以,所以,所以③正确,对于④,当轴时,可得,此时,所以,所以④错误,故选:C4、B【解析】利用两直线平行的等价条件求得实数m的值.【详解】∵两条直线x+my+6=0和(m﹣2)x+3y+2m=0互相平行,∴解得m=﹣1,故选B【点睛】已知两直线的一般方程判定两直线平行或垂直时,记住以下结论,可避免讨论:已知,,则,5、C【解析】由,且,可得,再结合,可得,进而在△中,由余弦定理可得到齐次方程,求出即可.【详解】由题意,可得,因为,所以,又,所以,在△中,,即,由余弦定理,可得,整理得,则,即,解得,因为,所以.故选:C.【点睛】方法点睛:本题考查求双曲线的离心率,属于中档题.双曲线离心率的求法:(1)由条件直接求出(或或),或者寻找(或或)所满足的关系,利用求解;(2)根据条件列出的齐次方程,利用转化为关于的方程,解方程即可,注意根据对所得解进行取舍.6、B【解析】根据倾斜角与斜率的关系可得,即可求m的范围.【详解】由题设知:直线斜率范围为,即,可得.故选:B.7、A【解析】设椭圆的长半轴长为,双曲线的实半轴长为,由定义可得,,在中利用余弦定理可得,即可求出结果.【详解】设椭圆的长半轴长为,双曲线的实半轴长为,不妨设在第一象限,根据椭圆和双曲线定义,得,,,由可得,又,在中,,即,化简得,两边同除以,得.故选:A.【点睛】关键点睛:本题考查共焦点的椭圆与双曲线的离心率问题,解题的关键是利用定义以及焦点三角形的关系列出齐次方程式进行求解.8、A【解析】由等差中项的概念列式求得值,再由等比数列的通项公式列式求解,则答案可求.【详解】由题意,,则;又1,,,8成等比数列,公比为,,即,,故选:.9、A【解析】①由正方形的性质,可以延伸正方形,再利用两条平行线确定一个平面即可;②一组邻边与对角面夹角相等,在平面内绕P转动,可以得到二条直线与a、b的夹角都等于.【详解】如下图所示,在侧面正方形和再延伸一个正方形和,则平面和在同一个平面内,所以过点P,有且只有一条直线l,即与a、b相交,故①为真命题;取中点N,连PN,由于a、b为异面直线,a、b的夹角等于与b的夹角.由于平面,平面,,所以平面,所以与与b的夹角都为.又因为平面,所以与与b的夹角都为,而,所以过点P,在平面内存在一条直线,使得与与b的夹角都为,同理可得,过点P,在平面内存在一条直线,使得与与的夹角都为;故②为真命题.故选:A10、C【解析】根据空间向量垂直与平行的坐标表示,求得的值,得到向量,进而求得,得到答案.【详解】由题意,向量,,,因为,可得,解得,即,又因为,可得,解得,即,可得,所以.故选:C.11、D【解析】求得点A,B的坐标,利用转化为坐标比求解.【详解】不妨设直线,由题意得,解得,即;由得,即,因为,所以,所以当时,,;当时,,则,故选:D12、A【解析】根据充分条件和必要条件的定义进行判断即可【详解】解:设为不到长城,推出非好汉,即,则,即好汉到长城,故“好汉”是“到长城”的充分条件,故选:A二、填空题:本题共4小题,每小题5分,共20分。13、4【解析】取点,可得,从而,,从而可求解【详解】解:由圆,得圆心,半径,取点A(3,0),则,又,∴,∴,∴,当且仅当直线时取等号故答案为:14、2【解析】由离心率为,∴双曲线为等轴双曲线,设双曲线方程为,可得双曲线方程为,设,则到两渐近线的距离为,,从而可求四边形的面积【详解】由离心率为,∴双曲线为等轴双曲线,设双曲线方程为,又双曲线过点,,∴,故双曲线方程为,∴渐近线方程为,设,则到两渐近线的距离为,,且,∵渐近线方程为,∴四边形为矩形,∴四边形的面积为故答案为:215、8【解析】根据给定条件求出抛物线C的焦点坐标,准线方程,再求出点A,B的横坐标和即可计算作答.【详解】抛物线C:焦点,准线方程为,依题意,直线l的方程为:,由消去x并整理得:,设,则,于是得,所以线段AB的长为8.故答案为:816、【解析】由题意得到为直角三角形.设,,根据椭圆的离心率,定义,直角三角形的面积公式,勾股定理建立方程的方程组,消元后可求得的值.【详解】由题可知,∴,又,代入上式整理得,由得为直角三角形又的面积为4,设,,则解得所以椭圆的标准方程为三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】(1)根据作差即可得到是以为首项,为公比的等比数列,从而得到数列的通项公式;(2)由(1)可知,,根据等差数列的通项公式得到,即可得到,再令,利用错位相减法求出,即可得证;【小问1详解】解:因为,且,当时,则,所以,当时,,则,即,所以是以为首项,为公比的等比数列,所以;【小问2详解】解:由(1)可知,,因为,所以,所以,令,则,所以,所以,即,所以,即;18、(1)60(2)①1024;②1【解析】(1)根据二项式定理求解(2)根据二项式定理与条件求解,二项式系数之和为,系数和可赋值【小问1详解】若,则,(,…,9)令∴∴常数项为.【小问2详解】,(,…,),解得①②令,得系数和为19、(1)(2)【解析】(1)根据题意列方程组求解(2)待定系数法设直线后,由条件求出坐标后代入双曲线方程求解【小问1详解】,解得,故双曲线方程为【小问2详解】,故设直线方程为则,由得:故,点在双曲线上,则,解得直线l的斜率为20、(1)条件选择见解析,,,(2)【解析】(1)选①,推导出数列为等比数列,确定该数列的首项和公比,可求得,并可求得、;选②,推导出数列是等比数列,确定该数列的首项和公比,可求得,可求得,由此可得出、;(2)求得,,分为偶数、奇数两种情况讨论,结合并项求和法以及等比数列求和公式可求得.【小问1详解】解:若选①,,且,故数列是首项为,公比为的等比数列,,故;若选②,,所以,,且,故数列是以为首项,以为公比的等比数列,所以,,故,所以,,故,.【小问2详解】解:由(1)可知,则,所以,.当为偶数时,;当为奇数时,.综上所述,.21、(1)见解析;(2)【解析】分析:(1)由四边形为矩形,可得,再由已知结合面面垂直的性质可得平面,进一步得到,再由,利用线面垂直的判定定理可得面,即可证得平面;(2)取的中点,连接,以为坐标原点,建立如图所示的空间直角坐标系,由题得,解得.进而求得平面和平面的法向量,利用向量的夹角公式,即可求解二面角的余弦值.详解:(1)证明:∵四边形ABCD是矩形,∴CD⊥BC.∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,CD平面ABCD,∴CD⊥平面PBC,∴CD⊥PB.∵PB⊥PD,CD∩PD=D,CD、PD平面PCD,∴PB⊥平面PCD.∵PB平面PAB,∴平面PAB⊥平面PCD.(2)设BC中点为,连接,,又面面,且面面,所以面.以为坐标原点,的方向为轴正方向,为单位长,建立如图所示的空间直角坐标系.由(1)知PB⊥平面PCD,故PB⊥,设,可得所以由题得,解得.所以设是平面的法向量,则,即,可取.设是平面的法向量,则,即,可取.则,所以二面角的余弦值为.点睛:本题考查了立体几何中的面面垂直的判定和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,明确角的构成.同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.22、(1)函数的单调性见解析;(2)证明见解析.【解析】(1)求出函数的导数,按a值分类讨论判断的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论