版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省深圳市普通高中2024届高二数学第一学期期末联考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线l的方向向量,平面α的一个法向量为,则直线l与平面α的位置关系是()A.平行 B.垂直C.在平面内 D.平行或在平面内2.在正项等比数列中,,,则()A27 B.64C.81 D.2563.已知直线,两个不同的平面,,则下列命题正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则4.已知点是椭圆上的任意一点,过点作圆:的切线,设其中一个切点为,则的取值范围为()A. B.C. D.5.已知双曲线:的左、右焦点分别为,,且,点是的右支上一点,且,,则双曲线的方程为()A. B.C. D.6.已知数列的通项公式是,则()A10100 B.-10100C.5052 D.-50527.某次生物实验6个小组的耗材质量(单位:千克)分别为1.71,1.58,1.63,1.43,1.85,1.67,则这组数据的中位数是()A.1.63 B.1.67C.1.64 D.1.658.直线平分圆的周长,过点作圆的一条切线,切点为,则()A.5 B.C.3 D.9.已知函数的导函数为,若的图象如图所示,则函数的图象可能是()A B.C. D.10.如图,双曲线,是圆的一条直径,若双曲线过,两点,且离心率为,则直线的方程为()A. B.C. D.11.已知实数,满足不等式组,若,则的最小值为()A. B.C. D.12.“”是“曲线为焦点在轴上的椭圆”的A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.不等式是的解集为______14.从1,2,3,4,5中任取两个不同的数,其中一个作为对数的底数a,另一个作为对数的真数b.则的概率为______.15.如图,四棱锥的底面是正方形,底面,为的中点,若,则点到平面的距离为___________.16.曲线在点处的切线的方程为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在等差数列中,已知且(1)求的通项公式;(2)设,求数列前项和18.(12分)如图,在三棱锥P-ABC中,△ABC是以AC为底的等腰直角三角形,PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且,求平面MAP与平面CAP所成角的大小.19.(12分)已知抛物线C:上一点与焦点F的距离为(1)求和p的值;(2)直线l:与C相交于A,B两点,求直线AM,BM的斜率之积20.(12分)已知命题:,在下面①②中任选一个作为:,使为真命题,求出实数a的取值范围.①关于x的方程有两个不等正根;②.(若选①、选②都给出解答,只按第一个解答计分.)21.(12分)已知函数.(1)求曲线在点处的切线的方程.(2)若直线为曲线切线,且经过坐标原点,求直线的方程及切点坐标.22.(10分)已知圆C:,圆C与x轴交于A,B两点(1)求直线y=x被圆C所截得的弦长;(2)圆M过点A,B,且圆心在直线y=x+1上,求圆M的方程
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据题意,结合线面位置关系的向量判断方法,即可求解.【详解】根据题意,因为,所以,所以直线l与平面α的位置关系是平行或在平面内故选:D2、C【解析】根据等比数列的通项公式求出公比,进而求得答案.【详解】设的公比为,则(负值舍去),所以.故选:C.3、C【解析】对于A,可能在内,故可判断A;对于B,可能相交,故可判断B;对于C,根据线面垂直的判定定理,可判定C;对于D,和可能平行,或斜交或在内,故可判断D.【详解】对于A,除了外,还有可能在内,故可判断A错误;对于B,,那么可能相交,故可判断B错误;对于C,根据线面平行的性质定理可知,在内一定存在和平行的直线,那么该直线也垂直于,所以,故判定C正确;对于D,,,则和可能平行,或斜交或在内,故可判D.错误,故选:C.4、B【解析】设,得到,利用椭圆的范围求解.【详解】解:设,则,,,因为,所以,即,故选:B5、B【解析】画出图形,利用已知条件转化求解,关系,利用,解得,即可得到双曲线的方程【详解】由题意双曲线的图形如图,连接与轴交于点,设,,因为,所以,因为,所以,则,因为点是的右支上一点,所以,所以,则,因为,所以,,由勾股定理可得:,即,解得,则,所以双曲线的方程为:故选:B6、D【解析】根据已知条件,用并项求和法即可求得结果.【详解】∵∴∴.故选:D.7、D【解析】将已有数据从小到大排序,根据中位数的定义确定该组数据的中位数.【详解】由题设,将数据从小到大排序可得:,∴中位数为.故选:D.8、B【解析】根据圆的性质,结合圆的切线的性质进行求解即可.【详解】由,所以该圆的圆心为,半径为,因为直线平分圆的周长,所以圆心在直线上,故,因此,,所以有,所以,故选:B9、D【解析】根据导函数大于,原函数单调递增;导函数小于,原函数单调递减;即可得出正确答案.【详解】由导函数得图象可得:时,,所以在单调递减,排除选项A、B,当时,先正后负,所以在先增后减,因选项C是先减后增再减,故排除选项C,故选:D.10、D【解析】由离心率求得,设出两点坐标代入双曲线方程相减求得直线斜率与的关系得结论【详解】由题意,则,即,由圆方程知,设,,则,,又,两式相减得,所以,直线方程为,即故选:D11、B【解析】作出不等式组对应的平面区域,然后根据线性规划的几何意义求得答案.【详解】作出不等式组所对应的可行域如图三角形阴影部分,平行移动直线直线,可以看到当移动过点A时,在y轴上的截距最小,联立,解得,当且仅当动直线即过点时,取得最小值为,故选:B12、C【解析】∵“”⇒“方程表示焦点在轴上的椭圆”,“方程表示焦点在轴上的椭圆”⇒“”,∴“”是“方程表示焦点在轴上的椭圆”的充要条件,故选C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由可得,结合分式不等式的解法即可求解.【详解】由可得,整理可得:,则,解可得:.所以不等式是的解集为:.故答案为:.14、##【解析】利用列举法,结合古典概型概率计算公式以及对数的知识求得正确答案.【详解】的所有可能取值为,,共种,满足的为,,共种,所以的概率为.故答案为:15、【解析】以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量法可求得点到平面的距离.【详解】因为底面,,以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,则、、、,设平面的法向量为,,,则,取,可得,,所以,点到平面的距离为.故答案为:.16、【解析】求出导函数,得切线斜率后可得切线方程【详解】,∴切线斜率为,切线方程为故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由等差数列基本量的计算即可求解;(2)由裂项相消求和法即可求解.【小问1详解】解:由题意,设等差数列的公差为,则,,解得,;【小问2详解】解:,.18、(1)证明见解析(2)【解析】(1)接BO,由是等边三角形得,由得出,再利用线面垂直的判断定理可得平面;(2)建立以为坐标原点,分别为轴的空间直角坐标系,求出平面的法向量、平面的法向量,利用二面角的向量求法可得答案.【小问1详解】连接BO,由已知△ABC是以AC为底的等腰直角三角形,且PA=PB=PC=AC=4,O为AC的中点,则是等边三角形,,,在中,,满足,即是直角三角形,则,又,平面,所以平面.【小问2详解】建立以为坐标原点,分别为轴的空间直角坐标系如图所示,则,,,,则平面的法向量为,由已知,得到点坐标,,设平面的法向量则,令,则,即,设平面MAP与平面CAP所成角为,则,则平面MAP与平面CAP所成角为.19、(1)(2)【解析】(1)结合抛物线的定义以及点坐标求得以及.(2)求得的坐标,由此求得直线AM,BM的斜率之积.【小问1详解】依题意抛物线C:上一点与焦点F的距离为,根据抛物线的定义可知,将点坐标代入抛物线方程得.【小问2详解】由(1)得抛物线方程为,,不妨设A在B下方,所以.20、答案见解析【解析】根据题意,分析、为真时的取值范围,又由复合命题真假的判断方法可得、都是真命题,据此分析可得答案.【详解】解:选①时由知在上恒成立,∴,即又由q:关于x的方程有两个不等正根,知解得,由为真命题知,解得.实数a的取值范围.选②时由知在上恒成立,∴,即又由,知在上恒成立,∴,又,当且仅当时取“=”号,∴,由为真命题知,解得.实数a的取值范围.21、(1);(2)直线的方程为,切点坐标为.【解析】(1)先求导数,再根据导数几何意义得切线斜率,最后根据点斜式得结果,(2)设切点,根据导数几何意义得切线斜率,根据点斜式得切线方程,再根据切线过坐标原点解得结果.【详解】(1).所以在点处的切线的斜率,∴切线的方程为;(2)设切点为,则直线的斜率为,所以直线的方程为:,所以又直线过点,∴,整理,得,∴,∴,的斜率,∴直线的方程为,切点坐标为.【点睛】本题考查导数几何意义以及利用导数求切线方程,考查基本分析求解能力,属基础题.22、(1);(2).【解析】(1)根据已知条件,结合垂径定理,以及点到直线的距离公式,即可求解(2)根据已知圆的方程,令y=0,结合韦达定理,求出圆心的横坐标,即可求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《学前教育法》是学前教育工作者的新征程
- 中考物理复习主题单元4第7课时运动的世界课件
- 第一章集合与常用逻辑用语考点三充分条件与必要条件教案
- 《玛丽哭了》教案讲解
- 员工灾难救助与重建指导
- 学校地下车库建设合同
- 供水管道维修班组施工合同
- 武汉市足球场租赁合同
- 保安巡逻安全操作手册
- 校园安全保卫工作手册
- 第7章国际资本流动与国际金融危机
- 藏传佛教英文词汇
- 模拟法庭刑事案例解析
- 人像摄影构图(PPT)
- 铁路杂费收费项目和标准
- 丹麦InteracousticsAD226系列临床诊断型听力计使用手册
- 万达会计综合实训
- 糖尿病健康知识宣教PPT课件
- 廉政风险防控台账
- 沪科版七年级上册数学总复习知识点考点
- 公路工程安全技术交底(完整版)
评论
0/150
提交评论