版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省永昌县四中2023-2024学年高二上数学期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,,则在上的投影向量为()A.1 B.C. D.2.已知离散型随机变量X的分布列如下:X123P则数学期望()A. B.C.1 D.23.积分()A. B.C. D.4.直线过椭圆内一点,若点为弦的中点,设为直线的斜率,为直线的斜率,则的值为()A. B.C. D.5.已知抛物线的焦点恰为双曲线的一个顶点,的另一顶点为,与在第一象限内的交点为,若,则直线的斜率为()A. B.C. D.6.等比数列的各项均为正数,且,则A. B.C. D.7.阅读程序框图,该算法的功能是输出A.数列的第4项 B.数列的第5项C.数列的前4项的和 D.数列的前5项的和8.(文科)已知点为曲线上的动点,为圆上的动点,则的最小值是A.3 B.5C. D.9.已知直线与圆相交于两点,当的面积最大时,的值是()A. B.C. D.10.将函数图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,再将所得图象向右平移个单位长度,得到函数的图象,则()A. B.C. D.11.已知向量,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件12.设双曲线:的左,右焦点分别为,,过的直线与双曲线的右支交于A,B两点,若,则双曲线的离心率为()A.4 B.2C. D.二、填空题:本题共4小题,每小题5分,共20分。13.直线l交椭圆于A,B两点,线段AB的中点为,直线是线段AB的垂直平分线,若,D为垂足,则D点的轨迹方程是______14.已知一组数据的平均数为4,方差为3,若另一组数据的平均数为10,则该组数据的方差为_______.15.随机投掷一枚均匀的硬币两次,则两次都正面朝上的概率为______16.圆关于直线对称的圆的方程为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆与(1)过点作直线与圆相切,求的方程;(2)若圆与圆相交于、两点,求的长18.(12分)某快餐配送平台针对外卖员送餐准点情况制定了如下的考核方案:每一单自接单后在规定时间内送达、延迟5分钟内送达、延迟5至10分钟送达、其他延迟情况,分别评定为四个等级,各等级依次奖励3元、奖励0元、罚款3元、罚款6元.假定评定为等级的概率分别是.(1)若某外卖员接了一个订单,求其不被罚款的概率;(2)若某外卖员接了两个订单,且两个订单互不影响,求这两单获得的奖励之和为3元的概率.19.(12分)如图所示,四棱锥的底面为矩形,,,过底面对角线作与平行的平面交于点(1)求二面角的余弦值;(2)求与所成角的余弦值;(3)求与平面所成角的正弦值20.(12分)如图所示,第九届亚洲机器人锦标赛VEX中国选拔赛永州赛区中,主办方设计了一个矩形坐标场地ABCD(包含边界和内部,A为坐标原点),AD长为10米,在AB边上距离A点4米的F处放置一只电子狗,在距离A点2米的E处放置一个机器人,机器人行走速度为v,电子狗行走速度为,若电子狗和机器人在场地内沿直线方向同时到达场地内某点M,那么电子狗将被机器人捕获,点M叫成功点.(1)求在这个矩形场地内成功点M的轨迹方程;(2)P为矩形场地AD边上的一动点,若存在两个成功点到直线FP的距离为,且直线FP与点M的轨迹没有公共点,求P点横坐标的取值范围.21.(12分)已知圆的圆心在直线上,且经过点和.(1)求圆的标准方程;(2)若过点且斜率存在的直线与圆交于,两点,且,求直线的方程.22.(10分)设数列的前n项和为,且满足.(1)证明为等比数列,并求数列通项公式;(2)在(1)的条件下,设,求数列的前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据题意得,进而根据投影向量的概念求解即可.【详解】解:因为,,所以,所以,所以在上的投影向量为故选:C2、D【解析】利用已知条件,结合期望公式求解即可【详解】解:由题意可知:故选:D3、B【解析】根据定积分的几何意义求值即可.【详解】由题设,定积分表示圆在x轴的上半部分,所以.故选:B4、A【解析】设点与的坐标,进而可表示与,再结合两点在椭圆上,可得的值.【详解】设点与,则,,所以,,又点与在椭圆上,所以,,作差可得,即,所以,故选:A.5、D【解析】根据题意,列出的方程组,解得,再利用斜率公式即可求得结果.【详解】因为抛物线的焦点,由题可知;又点在抛物线上,故可得;又,联立方程组可得,整理得,解得(舍)或,此时,又,故直线的斜率为.故选:D.6、B【解析】根据等比数列的性质,结合已知条件,求得,进而求得的值.【详解】由于数列是等比数列,故,所以,故.故选B.【点睛】本小题主要考查等比数列的性质,考查对数运算,属于基础题.7、B【解析】分析:模拟程序的运行,依次写出每次循环,直到满足条件,退出循环,输出A的值即可详解:模拟程序的运行,可得:
A=0,i=1执行循环体,,
不满足条件,执行循环体,不满足条件,执行循环体,不满足条件,执行循环体,不满足条件,执行循环体,满足条件,退出循环,输出A的值为31.观察规律可得该算法的功能是输出数列{}的第5项.所以B选项是正确的.点睛:模拟程序的运行,依次写出每次循环得到的A,i的值,当i=6时满足条件,退出循环,输出A的值,观察规律即可得解.8、A【解析】数形结合分析可得,当时能够取得的最小值,根据点到圆心的距离减去半径求解即可.【详解】由对勾函数的性质,可知,当且仅当时取等号,结合图象可知当A点运动到时能使点到圆心的距离最小,最小为4,从而的最小值为.故选:A【点睛】本题考查两动点间距离的最值问题,考查转化思想与数形结合思想,属于中档题.9、C【解析】利用点到直线的距离公式和弦长公式可以求出的面积是关于的一个式子,即可求出答案.【详解】圆心到直线的距离,弦长为..当,即时,取得最大值.故选:C.10、A【解析】根据三角函数图象的变换,由逆向变换即可求解.【详解】由已知的函数逆向变换,第一步,向左平移个单位长度,得到的图象;第二步,图象上所有点的横坐标缩短到原来的,纵坐标不变,得到的图象,即的图象.故.故选:A11、A【解析】根据平面向量垂直的性质,结合平面向量数量积的坐标表示公式、充分性、必要性的定义进行求解判断即可.详解】当时,有,显然由,但是由不一定能推出,故选:A12、B【解析】根据双曲线的定义及,求出,,,,再利用余弦定理计算可得;【详解】解:依题意可知、,又且,所以,,,,则,且,即,即,所以离心率.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设直线l的方程为,代入椭圆方程并化简,然后根据M为线段AB的中点结合根与系数的关系得到k,t间的关系,进而写出线段AB的垂直平分线的直线方程,可以判断它过定点E,再考虑直线l的斜率不存在的情况,根据题意可知,点D在以OE为直径的圆上,最后求出点D的轨迹方程.【详解】设直线l的方程为,代入椭圆方程并化简得:,设,则,解得.因为直线是线段AB的垂直平分线,故直线:,即:令,此时,,于是直线过定点当直线l的斜率不存在时,,直线也过定点点D在以OE为直径的圆上,则圆心为,半径,所以点D轨迹方程为:14、12【解析】根据题意,先通过原始数据的平均数、方差及新数据的平均数求出k,进而求出新数据的方差.【详解】由题意,原式数据的平均数和方程分别为:,则新数据的平均数,于是新数据的方差.故答案为:12.15、##【解析】列举出所有情况,利用古典概型的概率公式求解即可【详解】随机投掷一枚均匀的硬币两次,共有:正正,正反,反正,反反共4种情况,两次都是正面朝上的有:正正1种情况,所以两次都正面朝上的概率为,故答案为:16、【解析】求出圆心关于直线对称点,从而求出对称圆的方程.【详解】圆心为,半径为1,设关于对称点为,则,解得:,故对称点为,故圆关于直线对称的圆的方程为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)或(2)【解析】(1)根据已知可得圆心与半径,再利用几何法可得切线方程;(2)联立两圆方程可得公共弦方程,进而可得弦长.【小问1详解】解:圆的方程可化为:,即:圆的圆心为,半径为若直线的斜率不存在,方程为:,与圆相切,满足条件若直线的斜率存在,设斜率为,方程为:,即:由与圆相切可得:,解得:所以的方程为:,即:综上可得的方程为:或【小问2详解】联立两圆方程得:,消去二次项得所在直线的方程:,圆的圆心到的距离,所以.18、(1)(2)【解析】(1)利用互斥事件的概率公式,即可求解;(2)由条件可知两单共获得的奖励为3元即事件,同样利用互斥事件和的概率,即可求解.【小问1详解】设事件分别表示“被评为等级”,由题意,事件两两互斥,所以,又“不被罚款”,所以.因此“不被罚款”概率为;【小问2详解】设事件表示“第单被评为等级”,,则“两单共获得的奖励为3元”即事件,且事件彼此互斥,又,所以.19、(1);(2);(3).【解析】(1)设,连接、,证明出平面,推导出为的中点,然后以点为坐标原点,、、的方向分别为、、轴的正方向建立空间直角坐标系,利用空间向量法可求得二面角的余弦值;(2)利用空间向量法可求得与所成角的余弦值;(3)利用空间向量法可求得与平面所成角的正弦值.【小问1详解】解:设,则为、的中点,连接、,因为平面,平面,平面平面,则,因为为的中点,则为的中点,因为,为的中点,则,同理可证,,平面,,,则,,以点为坐标原点,、、的方向分别为、、轴的正方向建立如下图所示的空间直角坐标系,则、、、、、,设平面的法向量为,,,由,取,可得,易知平面的一个法向量为,.由图可知,二面角的平面角为锐角,因此,二面角的余弦值为.【小问2详解】解:,,,因此,与所成角的余弦值为.【小问3详解】解:,,因此,与平面所成角的正弦值为.20、(1)(2)【解析】(1)分别以为轴,建立平面直角坐标系,由题意,利用两点间的距离公式可得答案.(2)由题意可得点的轨迹所在圆的圆心到直线的距离,点的轨迹与轴的交点到直线的距离,从而可得答案.【小问1详解】分别以为轴,建立平面直角坐标系,则,设成功点,可得即,化简得因为点需在矩形场地内,所以故所求轨迹方程为【小问2详解】设,直线方程为直线FP与点M轨迹没有公共点,则圆心到直线的距离大于依题意,动点需满足两个条件:点的轨迹所在圆的圆心到直线的距离即,解得②点的轨迹与轴的交点到直线的距离即,解得综上所述,P点横坐标的取值范围是21、(1)(2)【解析】(1)设圆心,由题意得,,结合两点间的距离公式求解的值,则圆心与半径可求,圆的方程可求;(2)若直线的斜率不存在,设直线的方程为,符合题意,若直线的斜率存在,设直线方程为,即,由圆心到直线的距离与半径关系求得,则直线方程可求【小问1详解】解:(1)设圆心,由题意得,,,解得.圆心坐标为,半
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年企业员工职务变动协议书版B版
- 2024年品牌授权合同(服装零售)
- 2024年度租赁服务合同(2024版)3篇
- 2024年个人住房公积金贷款协议签订指南版B版
- 2024年度二手车位买卖合同范本格式5篇
- 2024 年适用高管聘用合同范本版B版
- 甘肃省定西市安定区石泉初级中学2024-2025学年七年级上学期11月月考历史试题(含答案)
- 二零二四年环保治理工程合同2篇
- 2024年BIM技术施工协议标准文本版B版
- 2024年度航空公司机票代理合同标的详细描述3篇
- 孕期饮食课件
- 旅游酒店引流方案模板
- 二手空调买卖合同范本
- 食品生产企业落实食品安全主体责任分享交流
- 连锁经营与管理专业职业生涯规划书
- 网络安全基础课件
- 压力容器质量安全风险管控清单(压力容器设计单位)
- 健身指导知识考试题库及答案(500题)
- 1例肺癌终末期患者伴有癌性伤口的个案护理
- 液冷数据中心白皮书 2023:数据中心液冷革命解锁未来的数字冰河
- 幼儿园优质公开课:大班综合《谁知盘中餐》有声动态课件
评论
0/150
提交评论