河北省秦皇岛市青龙满族自治县木头凳中学2024届高二数学第一学期期末调研模拟试题含解析_第1页
河北省秦皇岛市青龙满族自治县木头凳中学2024届高二数学第一学期期末调研模拟试题含解析_第2页
河北省秦皇岛市青龙满族自治县木头凳中学2024届高二数学第一学期期末调研模拟试题含解析_第3页
河北省秦皇岛市青龙满族自治县木头凳中学2024届高二数学第一学期期末调研模拟试题含解析_第4页
河北省秦皇岛市青龙满族自治县木头凳中学2024届高二数学第一学期期末调研模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省秦皇岛市青龙满族自治县木头凳中学2024届高二数学第一学期期末调研模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数,则曲线在点处的切线方程为()A. B.C. D.2.已知空间向量,则()A. B.C. D.3.若数列的前项和,则此数列是()A.等差数列 B.等比数列C.等差数列或等比数列 D.以上说法均不对4.已知抛物线的焦点为,抛物线上的两点,均在第一象限,且,,,则直线的斜率为()A.1 B.C. D.5.由下面的条件一定能得出为锐角三角形的是()A. B.C. D.6.已知为原点,点,以为直径的圆的方程为()A. B.C. D.7.有下列四个命题,其中真命题是()A., B.,,C.,, D.,8.已知“”的必要不充分条件是“或”,则实数的最小值为()A. B.C. D.9.在下列函数中,求导错误的是()A., B.,C., D.,10.过点的直线在两坐标轴上的截距之和为零,则该直线方程为()A. B.C.或 D.或11.等差数列中,是的前项和,,则()A.40 B.45C.50 D.5512.已知、分别是双曲线的左、右焦点,为一条渐近线上的一点,且,则的面积为()A. B.C. D.1二、填空题:本题共4小题,每小题5分,共20分。13.已知数列满足,则其通项公式________14.抛物线的准线方程是______15.将车行的30辆大巴车编号为01,02,…,30,采用系统抽样方法抽取一个容量为3的样本,且在某组随机抽得的一个号码为08,则剩下的两个号码依次是__________(按号码从小到大排列)16.经过点,的直线的倾斜角为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,其中为实数.(1)若函数的图像在处的切线与直线平行,求函数的解析式;(2)若,求在上的最大值和最小值.18.(12分)已知关于x的不等式,.(1)若,求不等式的解集;(2)若不等式的解集为R,求k的取值范围.19.(12分)如图,在直三棱柱中,平面侧面,且.(1)求证:;(2)若直线与平面所成的角为,请问在线段上是否存在点,使得二面角的大小为,若存在请求出的位置,不存在请说明理由.20.(12分)已知圆:与x轴负半轴交于点A,过A的直线交抛物线于B,C两点,且.(1)证明:点C的横坐标为定值;(2)若点C在圆内,且过点C与垂直的直线与圆交于D,E两点,求四边形ADBE的面积的最大值.21.(12分)设:,:.(1)若命题“,是真命题”,求的取值范围;(2)若是的充分不必要条件,求的取值范围.22.(10分)写出下列命题的否定,并判断它们的真假:(1):任意两个等边三角形都是相似的;(2):,.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】对函数求导,利用导数的几何意义求出切线斜率即可计算作答.【详解】依题意,,即有,而,则过点,斜率为1的直线方程为:,所以曲线在点处切线方程为.故选:D2、C【解析】A利用向量模长的坐标表示判断;B根据向量平行的判定,是否存在实数使即可判断;C向量数量积的坐标表示求即可判断;D利用向量坐标的线性运算及数量积的坐标表示求即可.【详解】因为,所以A不正确:因为不存在实数使,所以B不正确;因为,故,所以C正确;因为,所以,所以D不正确故选:C3、D【解析】利用数列通项与前n项和的关系和等差数列及等比数列的定义判断.【详解】当时,,当时,,当时,,所以是等差数列;当时,为非等差数列,非等比数列’当时,,所以是等比数列,故选:D4、C【解析】作垂直准线于,垂直准线于,作于,结合抛物线定义得出斜率为可求.【详解】如图:作垂直准线于,垂直准线于,作于,因为,,,由抛物线的定义可知:,,,所以,直线斜率为:.故选:C.5、D【解析】对于A,两边平方得,由得,即为钝角;对于B,由正弦定理求出,进而求出,可得结果;对于C,根据平方关系将余弦化为正弦,用正弦定理可将角转化为边,进而可得的值,从而作出判断;对于D,由可得,推出,,,故可知三个内角均为锐角【详解】解:对于A,由,两边平方整理得,,因为,所以,所以,所以,所以为钝角三角形,故A不正确;对于B,由,得,所以,因为,所以,所以或,所以或,所以为直角三角形或钝角三角形,故B不正确;对于C,因为,所以,即,由正弦定理得,由余弦定理得,因为,所以,故三角形为钝角三角形,C不正确;对于D,由可得,因为中最多只有一个钝角,所以,,中最多只有一个为负数,所以,,,所以中三个内角都为锐角,所以为锐角三角形,故D正确;故选:D6、A【解析】求圆的圆心和半径,根据圆的标准方程即可求解﹒【详解】由题知圆心为,半径,∴圆方程为﹒故选:A﹒7、B【解析】对于选项A,令即可验证其不正确;对于选项C、选项D,令,即可验证其均不正确,进而可得出结果.【详解】对于选项A,令,则,故A错;对于选项B,令,则,显然成立,故B正确;对于选项C,令,则显然无解,故C错;对于选项D,令,则显然不成立,故D错.故选B【点睛】本题主要考查命题真假的判定,用特殊值法验证即可,属于常考题型.8、A【解析】首先解不等式得到或,根据题意得到,再解不等式组即可.【详解】,解得或,因为“”的必要不充分条件是“或”,所以.实数的最小值为.故选:A9、B【解析】分别求得每个函数的导数即可判断.详解】;;;.故求导错误的是B.故选:B.10、D【解析】分截距为零和不为零两种情况讨论即可﹒【详解】当直线过原点时,满足题意,方程为,即2x-y=0;当直线不过原点时,设方程为,∵直线过(1,2),∴,∴,∴方程为,故选:D﹒11、B【解析】应用等差数列的性质“若,则”即可求解【详解】故选:B12、A【解析】先表示出渐近线方程,设出点坐标,利用,解出点坐标,再按照面积公式求解即可.【详解】由题意知,双曲线渐近线方程为,不妨设在上,设,由得,解得,的面积为.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用累加法即可求出数列的通项公式.【详解】因为,所以,所以,,,…,,把以上个式子相加,得,即,所以.故答案为:.14、【解析】由题意可得p=4,所以准线方程,填15、18,28【解析】根据等距抽样的性质确定剩下的两个号码即可.【详解】由于从30辆大巴车中抽取3辆车,故分组间距为10,又第一组的号码为08,所以其它两个号码依次是18,28故答案为:18,28.16、【解析】根据两点间斜率公式得到斜率,再根据斜率确定倾斜角大小即可.【详解】根据两点间斜率公式得:,所以直线的倾斜角为:.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2),【解析】(1)根据平行关系得到切线斜率,进而得到导函数在处的函数值,列出方程,求出,进而得到函数解析式;(2)先由求出,再利用导函数求单调性和最值.【小问1详解】,.由题意得:,解得:.,【小问2详解】,则,解得,,,当,解得:,即函数在单调递减,当,解得:或,即函数分别在,递增.又,,,,,.18、(1)(2)【解析】(1)因式分解后可求不等式的解集.(2)就分类讨论后可得的取值范围.【小问1详解】时,原不等式即为,其解为.【小问2详解】不等式的解集为R,当时,则有,解得,综上,.19、(1)证明见解析(2)存在,点E为线段中点【解析】(1)通过作辅助线结合面面垂直的性质证明侧面,从而证明结论;(2)建立空间直角坐标系,求出相关点的坐标,再求相关的向量坐标,求平面的法向量,利用向量的夹角公式求得答案.【小问1详解】证明:连接交于点,因,则由平面侧面,且平面侧面,得平面,又平面,所以三棱柱是直三棱柱,则底面ABC,所以.又,从而侧面,又侧面,故.【小问2详解】由(1).平面,则直线与平面所成的角,所以,又,所以假设在线段上是否存在一点E,使得二面角的大小为,由是直三棱柱,所以以点A为原点,以AC、所在直线分别为x,z轴,以过A点和AC垂直的直线为y轴,建立空间直角坐标系,如图所示,则,且设,,得所以,设平面的一个法向量,由,得:,取,由(1)知平面,所以平面的一个法向量,所以,解得,∴点E为线段中点时,二面角的大小为.20、(1)证明见解析(2)【解析】(1)设直线方程,与抛物线方程联立,设,,结合,得到,结合根与系数的关系,即可解得答案;(2)根据(1)所设,表示出弦长,再求出,进而表示出四边形ADBE的面积,据此求其最大值,【小问1详解】由题意知点的坐标为,易知直线的斜率存在且不为零,设直线:,,,联立,得,则,即,由韦达定理得,由,即,得,即,代入,得或,又抛物线开口向右,,所以点的横坐标为定值.【小问2详解】由(1)知点的坐标为,故,由(1)知点的坐标为,由点在圆内,得,解得,又,得的斜率,故的方程为,即,故圆心到直线的距离为,由垂径定理得,故,(),当且仅当时,有最大值,所以四边形的面积的最大值为.21、(1)(2)【解析】(1)解不等式得到解集,根据题意列出不等式组,求出的取值范围;(2)先解不等式,再根据充分不必要条件得到是的真子集,进而求出的取值范围.【小问1详解】因为,由可得:,因为“,”为真命题,所以,即,解得:.即的取值范围是.【小问2详解】因为,由可得:,,因为是的充分不必要条件,所以是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论