版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北邢台一中2024届数学高二上期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.为了防控新冠病毒肺炎疫情,某市疾控中心检测人员对外来入市人员进行核酸检测,人员甲、乙均被检测.设命题为“甲核酸检测结果为阴性”,命题为“乙核酸检测结果为阴性”,则命题“至少有一位人员核酸检测结果不是阴性”可表示为()A. B.C. D.2.甲、乙两组数的数据如茎叶图所示,则甲、乙的平均数、方差、极差及中位数相同的是()A.极差 B.方差C.平均数 D.中位数3.抛物线的焦点到准线的距离是A.2 B.4C. D.4.若函数在上为单调增函数,则m的取值范围()A. B.C. D.5.已知,,则的最小值为()A. B.C. D.6.如图,直三棱柱的所有棱长均相等,P是侧面内一点,设,若P到平面的距离为2d,则点P的轨迹是()A.圆的一部分 B.椭圆的一部分C.抛物线的一部分 D.双曲线的一部分7.椭圆的长轴长是()A.3 B.4C.6 D.88.方程表示的图形是A.两个半圆 B.两个圆C.圆 D.半圆9.若直线与平行,则m的值为()A.-2 B.-1或-2C.1或-2 D.110.已知不等式只有一个整数解,则m的取值范围是()A. B.C. D.11.抛物线的焦点到准线的距离为()A. B.C. D.12.已知实数x,y满足,则的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆的左、右焦点为,过作x轴垂线交椭圆于点P,若为等腰直角三角形,则椭圆的离心率是___________.14.函数极值点的个数是______15.已知为坐标原点,、分别是双曲线的左、右顶点,是双曲线上不同于、的动点,直线、与轴分别交于点、两点,则________16.一个高为2的圆柱,底面周长为2,该圆柱的表面积为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等比数列的公比,,.(1)求数列的通项公式;(2)令,若,求满足条件的最大整数n.18.(12分)已知椭圆C:,斜率为的直线l与椭圆C交于A、B两点且(1)求椭圆C的离心率;(2)求直线l的方程19.(12分)如图所示,在三棱柱中,平面,,,,点,分别在棱和棱上,且,,点为棱的中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.20.(12分)如图,在四棱锥中,平面平面,,,,,(Ⅰ)求证:;(Ⅱ)求二面角的余弦值;(Ⅲ)若点在棱上,且平面,求线段的长21.(12分)已知等差数列满足:,.(1)求数列的通项公式;(2)若数列满足:,,求数列的通项公式.22.(10分)如图,在四棱雉中,平面ABCD,底面ABCD是直角梯形,其中,,,,E为棱BC上的点,且(1)求证:平面PAC;(2)求二面角A-PC-D的正弦值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】表示出和,直接判断即可.【详解】命题为“甲核酸检测结果为阴性”,则命题为“甲核酸检测结果不是阴性”;命题为“乙核酸检测结果为阴性”,则命题为“乙核酸检测结果不是阴性”.故命题“至少有一位人员核酸检测结果不是阴性”可表示为.故选D.2、C【解析】根据茎叶图依次计算甲和乙的平均数、方差、中位数和极差即可得到结果.【详解】甲的平均数为:;乙的平均数为:;甲和乙的平均数相同;甲的方差为:;乙的方差为:;甲和乙的方差不相同;甲的极差为:;乙的极差为:;甲和乙的极差不相同;甲的中位数为:;乙的中位数为:;甲和乙的中位数不相同.故选:C.3、D【解析】因为抛物线方程可化为,所以抛物线的焦点到准线的距离是,故选D.考点:1、抛物线的标准方程;2、抛物线的几何性质.4、B【解析】用函数单调性确定参数,使用参数分离法即可.【详解】,在上是增函数,即恒成立,;设,;∴时,是增函数;时,是减函数;故时,,∴;故选:B.5、B【解析】将代数式展开,然后利用基本不等式可求出该代数式的最小值.【详解】,,由基本不等式得,当且仅当时,等号成立.因此,的最小值为.故选B.【点睛】本题考查利用基本不等式求最值,在利用基本不等式时要注意“一正、二定、三相等”条件的成立,考查计算能力,属于中等题.6、B【解析】取的中点,得出平面,作,在直角中,求得,以为原点,为轴,为轴建立平面直角坐标系,求得点的轨迹方程,即可求解.【详解】如图所示,取的中点,连接,得到平行于平面且过点的平面,如图(1)(2)所示,作,则P1与E重合,则,在直角中,可得,在图(3)中,设直三棱柱的所有棱长均为,且,以为原点,为轴,为轴建立平面直角坐标系,则,所以,即所以,整理得,所以点P的轨迹是椭圆的一部分.故选:B.7、D【解析】根据椭圆方程可得到a,从而求得长轴长.【详解】椭圆方程为,故,所以椭圆长轴长为,故选:D.8、D【解析】其中,再两边同时平方,由此确定图形【详解】根据题意,,再两边同时平方,由此确定图形为半圆.故选:D【点睛】几何图像中要注意与方程式是一一对应,故方程的中未知数的的取值范围对应到图形中的坐标的取值范围9、C【解析】利用两直线平行的判定有,即可求参数值.【详解】由题设,,可得或.经验证不重合,满足题意,故选:C.10、B【解析】依据导函数得到函数的单调性,数形结合去求解即可解决.【详解】不等式只有一个整数解,可化为只有一个整数解令,则当时,,单调递增;当时,,单调递减,则当时,取最大值,当时,恒成立,的草图如下:,,则若只有一个整数解,则,即故不等式只有一个整数解,则m的取值范围是故选:B11、B【解析】根据抛物线的几何性质可得选项.【详解】由得,所以,所以抛物线的焦点到准线的距离为1,故选:B.12、B【解析】实数,满足,通过讨论,得到其图象是椭圆、双曲线的一部分组成的图形,借助图象分析可得的取值就是图象上一点到直线距离范围的2倍,求出切线方程根据平行直线距离公式算出最小值,和最大值的极限值即可得出答案.【详解】因为实数,满足,所以当时,,其图象是位于第一象限,焦点在轴上的双曲线的一部分(含点),当时,其图象是位于第四象限,焦点在轴上的椭圆的一部分,当时,其图象不存在,当时,其图象是位于第三象限,焦点在轴上的双曲线的一部分,作出椭圆和双曲线的图象,其中图象如下:任意一点到直线的距离所以,结合图象可得的范围就是图象上一点到直线距离范围的2倍,双曲线,其中一条渐近线与直线平行,通过图形可得当曲线上一点位于时,取得最小值,无最大值,小于两平行线与之间的距离的倍,设与其图像在第一象限相切于点,由因为或(舍去)所以直线与直线的距离为此时,所以的取值范围是故选:B【点睛】三种距离公式:(1)两点间的距离公式:平面上任意两点间的距离公式为;(2)点到直线的距离公式:点到直线的距离;(3)两平行直线间的距离公式:两条平行直线与间的距离.二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】以为等腰直角三角形列方程组可得之间的关系式,进而求得椭圆的离心率.【详解】椭圆的左、右焦点为,点P由为等腰直角三角形可知,,即可化为,故或(舍)故答案为:14、0【解析】通过导数判断函数的单调性即可得极值点的情况.【详解】因为,,所以在上恒成立,所以在上单调递增,所以函数的极值点的个数是0,故答案为:0.15、3【解析】求得坐标,设出点坐标,求得直线的方程,由此求得两点的纵坐标,进而求得.【详解】依题意,设,则,直线的方程为,则,直线的方程为,则,所以.故答案为:16、6【解析】2r=2,r=1,S表=2rh+2r2=4+2=6.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由等比数列的性质可得,结合条件求出,得出公比,从而得出通项公式.(2)由(1)可得,再求出的前项和,从而可得出答案.【小问1详解】由题意可知,有,,得或∴或又,∴∴【小问2详解】,∴∴,又单调递增,所以满足条件的的最大整数为18、(1)(2)或【解析】(1)将椭圆化为标准方程,求得,进而求得离心率;(2)设直线,,,与椭圆联立,借助韦达定理及弦长公式求得,从而求得直线方程.【小问1详解】由题知,椭圆C:,则,离心率【小问2详解】设直线,,联立,化简得,则,解得,,由弦长公式知,,解得,故直线或19、(1)证明见解析(2)【解析】(1)构建空间直角坐标系,由已知确定相关点坐标,进而求的方向向量、面的法向量,并应用坐标计算空间向量的数量积,即可证结论.(2)求的方向向量,结合(1)中面的法向量,应用空间向量夹角的坐标表示求直线与平面所成角的正弦值.【小问1详解】以为原点,以,,为轴、轴、轴的正方向建立空间直角坐标系,如图所示,可得:,,,,,,,.∴,,,设为面的法向量,则,令得,∴,即,∴平面;【小问2详解】由(1)知:,为面的一个法向量,设与平面所成角为,则,∴直线与平面所成角的正弦值为.20、(Ⅰ)见解析.(Ⅱ).(Ⅲ).【解析】第一问根据面面垂直的性质和线面垂直的性质得出线线垂直的结论,注意在书写的时候条件不要丢就行;第二问建立空间直角坐标系,利用法向量所成角的余弦值来求得二面角的余弦值;第三问利用向量共线的关系,得出向量的坐标,根据线面平行得出向量垂直,利用其数量积等于零,求得结果.(Ⅰ)证明:因为平面⊥平面,且平面平面,因为⊥,且平面所以⊥平面因为平面,所以⊥.(Ⅱ)解:在△中,因为,,,所以,所以⊥.所以,建立空间直角坐标系,如图所示所以,,,,,,.易知平面的一个法向量为.设平面的一个法向量为,则,即,令,则.设二面角的平面角为,可知为锐角,则,即二面角的余弦值为(Ⅲ)解:因为点在棱,所以,因为,所以,.又因为平面,为平面的一个法向量,所以,即,所以所以,所以.21、(1);(2).【解析】(1)由题设条件,结合等差数列通项公式求基本量d,进而写出通项公式.(2)由(1)得,应用累加法、错位相减法及等比数列前n项和公式求的通项公式.【小问1详解】令公差为d,由得:,解得.所以.【小问2详解】,则,累加整理,得:,①,②②-①得:,又满足上式,故.22、(1)证明见解析(2)【解析】建立空间直角坐标系,计算出相关点的坐标,进而计算出相关向量的坐标;(1)计算向量的数量积,,根据数量积结果为零,证明线线垂直,进而证明线面垂直2;(2)求出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 44619-2024福寿螺检疫鉴定方法
- 家用水龙头过滤器产品供应链分析
- 包装用纸袋产品供应链分析
- 工商管理辅助行业相关项目经营管理报告
- 含药喉咙喷剂产品供应链分析
- 发行预付费代金券行业相关项目经营管理报告
- 刷子用貉毛产业链招商引资的调研报告
- 年金保险行业相关项目经营管理报告
- 虚拟现实游戏用耳机项目运营指导方案
- 安排和举办青年足球训练项目行业经营分析报告
- 2024年国家公务员考试《行测》真题卷(行政执法)答案和解析
- 公共基础知识1000题题库
- 生猪屠宰兽医卫生检验人员理论考试题库及答案
- 2024年北京公交集团第四客运分公司招聘笔试参考题库附带答案详解
- 《陆上风电场工程设计概算编制规定及费用标准》(NB-T 31011-2019)
- 精品资料(2021-2022年收藏)南宁市茧丝绸产业发展方案
- 《无菌导尿术》PPT课件.ppt
- 接触网基础知识
- 计量标准技术报告电子天平检定装置
- 涡格法代码及解释_物理_自然科学_专业资料
- 中国南阳介绍PPTppt
评论
0/150
提交评论