版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省凤冈县二中2024届高二数学第一学期期末学业质量监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.圆心在x轴上且过点的圆与y轴相切,则该圆的方程是()A. B.C. D.2.我国古代数学论著中有如下叙述:“远望巍巍塔七层,红光点点倍加增,共灯二百五十四.”思如下:一座7层塔共挂了254盏灯,且相邻两层下一层所挂灯数是上一层所挂灯数的2倍.下列结论不正确的是()A.底层塔共挂了128盏灯B.顶层塔共挂了2盏灯C.最下面3层塔所挂灯的总盏数比最上面3层塔所挂灯的总盏数多200D.最下面3层塔所挂灯的总盏数是最上面3层塔所挂灯的总盏数的16倍3.设点关于坐标原点的对称点是B,则等于()A.4 B.C. D.24.若抛物线上一点到焦点的距离为5,则点的坐标为()A. B.C. D.5.在等比数列中,,公比,则()A. B.6C. D.26.等比数列的第4项与第6项分别为12和48,则公比的值为()A. B.2C.或2 D.或7.设命题,,则为().A., B.,C., D.,8.△ABC的两个顶点坐标A(-4,0),B(4,0),它的周长是18,则顶点C的轨迹方程是()A. B.(y≠0)C. D.9.已知,则方程与在同一坐标系内对应的图形编号可能是()A.①④ B.②③C.①② D.③④10.在空间直角坐标系中,点关于轴的对称点为点,则点到直线的距离为()A B.C. D.611.椭圆()的右顶点是抛物线的焦点,且短轴长为2,则该椭圆方程为()A. B.C. D.12.已知实数x,y满足,则的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设,若直线与直线平行,则的值是________14.若过点作圆的切线,则切线方程为___________.15.已知圆锥的母线长为cm,其侧面展开图是一个半圆,则底面圆的半径为____cm.16.如图,四棱锥的底面是正方形,底面,为的中点,若,则点到平面的距离为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,三棱锥中,两两垂直,,且分别为线段的中点.(1)若点是线段的中点,求证:直线平面;(2)求证:平面平面.18.(12分)已知抛物线的焦点F,C上一点到焦点的距离为5(1)求C的方程;(2)过F作直线l,交C于A,B两点,若线段AB中点的纵坐标为-1,求直线l的方程19.(12分)如图,在四棱锥中,底面是矩形,,,,,为的中点.(1)证明:平面;(2)求直线与平面所成角的正弦值.20.(12分)如图,PA⊥平面ABCD,四边形ABCD是正方形,PA=AD=2,M、N分别是AB、PC的中点(1)求证:平面MND⊥平面PCD;(2)求点P到平面MND的距离21.(12分)已知直线,直线经过点且与直线平行,设直线分別与x轴,y轴交于A,B两点.(1)求点A和B的坐标;(2)若圆C经过点A和B,且圆心C在直线上,求圆C的方程.22.(10分)已知椭圆.离心率为,点与椭圆的左、右顶点可以构成等腰直角三角形(1)求椭圆的方程;(2)若直线与椭圆交于两点,为坐标原点直线的斜率之积等于,试探求的面积是否为定值,并说明理由
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据题意设出圆的方程,列式即可求出【详解】依题可设圆的方程为,所以,解得即圆的方程是故选:A2、C【解析】由题设易知是公比为2的等比数列,应用等比数列前n项和公式求,结合各选项的描述及等比数列通项公式、前n项和公式判断正误即可.【详解】从上往下记每层塔所挂灯的盏数为,则数列是公比为2的等比数列,且,解得,所以顶层塔共挂了2盏灯,B正确;底层塔共挂了盏灯,A正确最上面3层塔所挂灯总盏数为14,最下面3层塔所挂灯的总盏数为224,C不正确,D正确故选:C.3、A【解析】求出点关于坐标原点的对称点是B,再利用两点之间的距离即可求得结果.【详解】点关于坐标原点的对称点是故选:A4、C【解析】设,由抛物线的方程可得准线方程为,由抛物线的性质到焦点的距离等于到准线的距离,求出,解出纵坐标,进而求出【详解】由题意可得,解得,代入抛物线的方程,解得,所以的坐标,故选:C.5、D【解析】利用等比数列的通项公式求解【详解】由等比数列的通项公式得:.故选:D6、C【解析】根据等比数列的通项公式计算可得;详解】解:依题意、,所以,即,所以;故选:C7、B【解析】根据全称命题和特称命题互为否定,即可得到结果.【详解】因为命题,,所以为,.故选:B.8、D【解析】根据三角形的周长得出,再由椭圆的定义得顶点C的轨迹为以A,B为焦点的椭圆,去掉A,B,C共线的情况,可求得顶点C的轨迹方程.【详解】因为,所以,所以顶点C的轨迹为以A,B为焦点的椭圆,去掉A,B,C共线的情况,即,所以顶点C的轨迹方程是,故选:D.【点睛】本题考查椭圆的定义,由定义求得动点的轨迹方程,求解时,注意去掉不满足的点,属于基础题.9、B【解析】结合椭圆、双曲线、抛物线的图像,分别对①②③④分析m、n的正负,即可得到答案.【详解】对于①:由双曲线的图像可知:;由抛物线的图像可知:同号,矛盾.故①错误;对于②:由双曲线的图像可知:;由抛物线的图像可知:异号,符合要求.故②成立;对于③:由椭圆的图像可知:;由抛物线的图像可知:同号,且抛物线的焦点在x轴上,符合要求.故③成立;对于④:由椭圆的图像可知:;由抛物线的图像可知:同号,且抛物线的焦点在x轴上,矛盾.故④错误;故选:B10、C【解析】按照空间中点到直线的距离公式直接求解.【详解】由题意,,,的方向向量,,则点到直线的距离为.故选:C.11、A【解析】求得抛物线的焦点从而求得,再结合题意求得,即可写出椭圆方程.【详解】因为抛物线的焦点坐标为,故可得;又短轴长为2,故可得,即;故椭圆方程为:.故选:.12、B【解析】实数,满足,通过讨论,得到其图象是椭圆、双曲线的一部分组成的图形,借助图象分析可得的取值就是图象上一点到直线距离范围的2倍,求出切线方程根据平行直线距离公式算出最小值,和最大值的极限值即可得出答案.【详解】因为实数,满足,所以当时,,其图象是位于第一象限,焦点在轴上的双曲线的一部分(含点),当时,其图象是位于第四象限,焦点在轴上的椭圆的一部分,当时,其图象不存在,当时,其图象是位于第三象限,焦点在轴上的双曲线的一部分,作出椭圆和双曲线的图象,其中图象如下:任意一点到直线的距离所以,结合图象可得的范围就是图象上一点到直线距离范围的2倍,双曲线,其中一条渐近线与直线平行,通过图形可得当曲线上一点位于时,取得最小值,无最大值,小于两平行线与之间的距离的倍,设与其图像在第一象限相切于点,由因为或(舍去)所以直线与直线的距离为此时,所以的取值范围是故选:B【点睛】三种距离公式:(1)两点间的距离公式:平面上任意两点间的距离公式为;(2)点到直线的距离公式:点到直线的距离;(3)两平行直线间的距离公式:两条平行直线与间的距离.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先通过讨论分成斜率存在和不存在两种情况,然后再按照两直线平行的判定方法求解即可.【详解】由已知可得,当时,两直线分别为和,此时,两直线不平行;当时,要使得两直线平行,即,解得,.故答案为:14、或【解析】根据圆心到切线的距离等于圆的半径即可求解.【详解】由题意可知,,故在圆外,则过点做圆的切线有两条,且切线斜率必存在,设切线为,即,则圆心到直线的距离,解得或,故切线方程为或故答案为:或15、【解析】根据题意可知圆锥侧面展开图的半圆的半径为cm,再根据底面圆的周长等于侧面的弧长,即可求出结果.【详解】设底面圆的半径为,由于侧面展开图是一个半圆,又圆锥的母线长为cm,所以该半圆的半径为cm,所以,所以(cm).故答案为:.16、【解析】以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量法可求得点到平面的距离.【详解】因为底面,,以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,则、、、,设平面的法向量为,,,则,取,可得,,所以,点到平面的距离为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)证明见解析【解析】(1)由题意可得,从而可证.(2)由题意可得平面,从而可得,由根据条件可得,从而可得平面,从而可得证.【小问1详解】由分别为线段的中点.由中位线定理知,又平面,且平面,所以直线平面【小问2详解】两两垂直,即,且所以平面,又平面,所以由,且分别为线段的中点,所以,因此根据线面垂直判定定理得平面,且平面所以平面平面.18、(1);(2).【解析】(1)由抛物线的定义,结合已知有求p,写出抛物线方程.(2)由题意设直线l为,联立抛物线方程,应用韦达定理可得,由中点公式有,进而求k值,写出直线方程.【详解】(1)由题意知:抛物线的准线为,则,可得,∴C的方程为.(2)由(1)知:,由题意知:直线l的斜率存在,令其方程为,∴联立抛物线方程,得:,,若,则,而线段AB中点的纵坐标为-1,∴,即,得,∴直线l的方程为.【点睛】关键点点睛:(1)利用抛物线定义求参数,写出抛物线方程;(2)由直线与抛物线相交,以及相交弦的中点坐标值,应用韦达定理、中点公式求直线斜率,并写出直线方程.19、(1)证明见解析;(2).【解析】(1)由可得,再结合和线面垂直的判定定理可得平面,则,再由可得平面.(2)以为原点,,,为轴,轴,轴,建立空间直角坐标系如图所示,利用空间向量求解即可【详解】(1)证明:∵为矩形,且,∴.又∵,.∴,.又∵,,∴平面.∵平面,∴又∵,,∴平面.(2)解:以为原点,,,为轴,轴,轴,建立空间直角坐标系如图所示:则,,,,,∴,,设平面法向量则,即∴,∴∴直线与所成角的正弦值为.20、(1)见解析;(2)【解析】(1)作出如图所示空间直角坐标系,根据题中数据可得、、的坐标,利用垂直向量数量积为零的方法算出平面、平面的法向量分别为,,和,1,,算出,可得,从而得出平面平面;(2)由(1)中求出的平面法向量,,与向量,2,,利用点到平面的距离公式加以计算即可得到点到平面的距离【详解】(1)证明:平面,,、、两两互相垂直,如图所示,分别以、、所在直线为轴、轴和轴建立空间直角坐标系,则,0,,,0,,,2,,,2,,,0,,,0,,,1,,,1,,,1,,,2,设,,是平面的一个法向量,可得,取,得,,,,是平面的一个法向量,同理可得,1,是平面的一个法向量,,,即平面的法向量与平面的法向量互相垂直,可得平面平面;(2)解:由(1)得,,是平面的一个法向量,,2,,得,点到平面的距离21、(1),;(2).【解析】(1)由直线平行及所过的点,应用点斜式写出直线方程,进而求A、B坐标.(2)由(1)求出垂直平分线方程,并联立直线求圆心坐标,即可求圆的半径,进而写出圆C的方程.【小问1详解】由题设,的斜率为,又直线与直线平行且过,所以直线为,即,令,则;令,则.所以,.【小问2详解】由(1)可得:垂直平分线为,即,联立,可得,即,故圆的半径为,所以圆C的方程为.22、(1);(2)是定值,理由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《个人防护用品知识》课件
- 财务会计实训报告范文
- 部门调研报告范文
- 《微生物遗传实验》课件
- 孤独的小熊中班课件
- 聘请人力资源顾问咨询合同书2024年度:某企业与人力资源公司之间的合作协议
- 挖掘机转让合同协议书 3篇
- 版个人简单的施工协议标准版可打印
- 2024版工程材料循环运输协议3篇
- 《β受体激动药》课件
- 保证体系框图
- 取暖器产品1油汀ny221218试验报告
- 冯晓霞教授的《幼儿学习品质观察评定表》
- VB Winsock控件(UDP协议)的使用
- 办公室工作存在的问题与对策
- 世界各国常用插头形式尺寸标准
- 上海市单位退工证明退工单(共1页)
- 个人所得税完税证明英文翻译模板
- 浅析某燃气轮机发电厂节能降耗的主要措施
- 《渔夫和金鱼的故事》.ppt
- 国家公派出国留学经验交流PPT课件
评论
0/150
提交评论