河北省邯郸市鸡泽一中2023年数学高二上期末教学质量检测试题含解析_第1页
河北省邯郸市鸡泽一中2023年数学高二上期末教学质量检测试题含解析_第2页
河北省邯郸市鸡泽一中2023年数学高二上期末教学质量检测试题含解析_第3页
河北省邯郸市鸡泽一中2023年数学高二上期末教学质量检测试题含解析_第4页
河北省邯郸市鸡泽一中2023年数学高二上期末教学质量检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省邯郸市鸡泽一中2023年数学高二上期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在某次海军演习中,已知甲驱逐舰在航母的南偏东15°方向且与航母的距离为12海里,乙护卫舰在甲驱逐舰的正西方向,若测得乙护卫舰在航母的南偏西45°方向,则甲驱逐舰与乙护卫舰的距离为()A.海里 B.海里C.海里 D.海里2.几何学史上有一个著名的米勒问题:“设点、是锐角的一边上的两点,试在边上找一点,使得最大的.”如图,其结论是:点为过、两点且和射线相切的圆的切点.根据以上结论解决一下问题:在平面直角坐标系中,给定两点,,点在轴上移动,当取最大值时,点的横坐标是()A.B.C.或D.或3.若圆与直线相切,则()A.3 B.或3C. D.或4.已知A(3,2),点F为抛物线的焦点,点P在抛物线上移动,为使取得最小值,则点P的坐标为()A.(0,0) B.(2,2)C. D.5.已知双曲线的渐近线方程为,则该双曲线的离心率等于()A. B.C.2 D.46.已知是等差数列的前项和,,,则的最小值为()A. B.C. D.7.等差数列中,,,则()A.1 B.2C.3 D.48.已知双曲线的右焦点为F,关于原点对称的两点A、B分别在双曲线的左、右两支上,,且点C在双曲线上,则双曲线的离心率为()A.2 B.C. D.9.已知双曲线离心率为2,过点的直线与双曲线C交于A,B两点,且点P恰好是弦的中点,则直线的方程为()A. B.C. D.10.有下列四个命题,其中真命题是()A., B.,,C.,, D.,11.当圆的圆心到直线的距离最大时,()A B.C. D.12.已知过点的直线与圆相切,且与直线垂直,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知A,B为x,y正半轴上的动点,且,O为坐标原点,现以为边长在第一象限做正方形,则的最大值为___________.14.若将抛掷一枚硬币所出现的结果“正面(朝上)”与“反面(朝上)”,分别记为H、T,相应的抛掷两枚硬币的样本空间为,则与事件“一个正面(朝上)一个反面(朝上)”对应的样本空间的子集为______15.下图是4个几何体的展开图,图①是由4个边长为3的正三角形组成;图②是由四个边长为3的正三角形和一个边长为3的正方形组成;图③是由8个边长为3的正三角形组成;图④是由6个边长为3的正方形组成若直径为4的球形容器(不计容器厚度)内有一几何体,则该几何体的展开图可以是______(填所有正确结论的番号)16.直线的倾斜角的取值范围是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知点,(1)若过点P作的切线只有一条,求实数的值及切线方程;(2)过点P作斜率为1的直线l与相交于M,N两点,当面积最大时,求实数的值18.(12分)已知数列满足,数列为等差数列,,前4项和.(1)求数列,的通项公式;(2)求和:.19.(12分)求函数在区间上的最大值和最小值20.(12分)已知数列的前n项和为,,,其中.(1)记,求证:是等比数列;(2)设,数列的前n项和为,求证:.21.(12分)如图,在四棱锥中,底面为直角梯形,,,平面底面,为的中点,是棱上的点,,,.(1)求证:平面平面;(2)若,求异面直线与所成角余弦值;(3)在线段上是否存在一点,使二面角大小为?若存在,请指出点的位置,若不存在,请说明理由.22.(10分)如图,点О是正四棱锥的底面中心,四边形PQDO矩形,(1)点B到平面APQ的距离:(2)设E为棱PC上的点,且,若直线DE与平面APQ所成角的正弦值为,试求实数的值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】利用正弦定理可求解.【详解】设甲驱逐舰、乙护卫舰、航母所在位置分别为A,B,C,则,,.在△ABC中,由正弦定理得,即,解得,即甲驱逐舰与乙护卫舰的距离为海里故选:A2、A【解析】根据米勒问题的结论,点应该为过点、的圆与轴的切点,设圆心的坐标为,写出圆的方程,并将点、的坐标代入可求出点的横坐标.【详解】解:设圆心的坐标为,则圆的方程为,将点、的坐标代入圆的方程得,解得或(舍去),因此,点的横坐标为,故选:A.3、B【解析】根据圆与与直线相切,利用圆心到直线的距离等于半径求解.【详解】圆的标准方程为:,则圆心为,半径为,因为圆与与直线相切,所以圆心到直线的距离等于半径,即,解得或,故选:B4、B【解析】设点P到准线的距离为,根据抛物线的定义可知,即可根据点到直线的距离最短求出【详解】如图所示:设点P到准线的距离为,准线方程为,所以,当且仅当点为与抛物线的交点时,取得最小值,此时点P的坐标为故选:B5、A【解析】由双曲线的渐近线方程,可得,再由的关系和离心率公式,计算即可得到所求值【详解】解:双曲线的渐近线方程为,由题意可得即,可得由可得,故选:A.6、C【解析】根据,可得,再根据,得,从而可得出答案.【详解】解:因为,所以,又,所以,所以的最小值为.故选:C.7、B【解析】根据给定条件利用等差数列性质直接计算作答.【详解】在等差数列中,因,,而,于是得,解得,所以.故选:B8、D【解析】设,由,得到四边形是矩形,在中,利用勾股定理求得,再在中,利用勾股定理求解.【详解】如图所示:设,则,,,因为,所以,则四边形是矩形,在中,,即,解得,在中,,即,解得,故选:D9、C【解析】运用点差法即可求解【详解】由已知得,又,,可得.则双曲线C的方程为.设,,则两式相减得,即.又因为点P恰好是弦的中点,所以,,所以直线的斜率为,所以直线的方程为,即.经检验满足题意故选:C10、B【解析】对于选项A,令即可验证其不正确;对于选项C、选项D,令,即可验证其均不正确,进而可得出结果.【详解】对于选项A,令,则,故A错;对于选项B,令,则,显然成立,故B正确;对于选项C,令,则显然无解,故C错;对于选项D,令,则显然不成立,故D错.故选B【点睛】本题主要考查命题真假的判定,用特殊值法验证即可,属于常考题型.11、C【解析】求出圆心坐标和直线过定点,当圆心和定点的连线与直线垂直时满足题意,再利用两直线垂直,斜率乘积为-1求解即可.【详解】解:因为圆的圆心为,半径,又因为直线过定点A(-1,1),故当与直线垂直时,圆心到直线的距离最大,此时有,即,解得.故选:C.12、B【解析】首先由点的坐标满足圆的方程来确定点在圆上,然后求出过点的圆的切线方程,最后由两直线的垂直关系转化为斜率关系求解.【详解】由题知,圆的圆心,半径.因为,所以点在圆上,所以过点的圆的切线与直线垂直,设切线的斜率,则有,即,解得.因为直线与切线垂直,所以,解得.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、32【解析】建立平面直角坐标系,设出角度和边长,表达出点坐标,进而表达出,利用三角函数换元,求出最大值.【详解】如图,过点D作DE⊥x轴于点E,过点C作CF⊥y轴于点F,设,(),则由三角形全等可知,设,,则,则,,则,令,,则,当时,取得最大值,最大值为32故答案为:3214、,,,【解析】先写出与事件“一个正面(朝上)一个反面(朝上)”对应的样本空间,再写出其全部子集即可.【详解】与事件“一个正面(朝上)一个反面(朝上)”对应的样本空间为,此空间的子集为,,,故答案为:,,,15、①【解析】根据几何体展开图可知①正四面体、②正四棱锥、③正八面体、④正方体,进而求其外接球半径,并与4比较大小,即可确定答案.【详解】若几何体外接球球心为,半径为,①由题设,几何体为棱长为3的正四面体,为底面中心,则,,所以,可得,即,满足要求;②由题设,几何体为棱长为3的正四棱锥,为底面中心,则,所以,可得,即,不满足要求;③由题设,几何体为棱长为3的正八面体,其外接球直径同棱长为3的正四棱锥,故不满足要求;④由题设,几何体为棱长为3的正方体,体对角线的长度即为外接球直径,所以,不满足要求;故答案为:①16、【解析】先求出直线的斜率取值范围,再根据斜率与倾斜角的关系,即可求出【详解】可化为:,所以,由于,结合函数在上的图象,可知故答案为:【点睛】本题主要考查斜率与倾斜角的关系的应用,以及直线的一般式化斜截式,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);当时,切线方程为;当时,切线方程为;(2)或【解析】(1)根据题意可知P在圆上,据此即可求t和切线方程;(2)的面积,则当面积最大时,.即,据此即可求出圆心O到直线l的距离,即可求出t的数值.【小问1详解】由题意得点在上,∴,,①当时,切点,直线OP的斜率,切线斜率,切线方程为,即②当时,切点,直线OP的斜率,切线斜率,切线方程,即【小问2详解】∵的面积,则当面积最大时,.即,则圆心O到直线l距离又直线,即,则,解之得或注:亦可设圆心O到直线l的距离为d,则的面积,当且仅当,即时取等号(下同)18、(1),;(2).【解析】(1)根据等比数列的定义,结合等差数列的基本量,即可容易求得数列,的通项公式;(2)根据(1)中所求,构造数列,证明其为等比数列,利用等比数列的前项和即可求得结果.【小问1详解】因为数列满足,故可得数列为等比数列,且公比,则;数列为等差数列,,前4项和,设其公差为,故可得,解得,则;综上所述,,.【小问2详解】由(1)可知:,,故,又,又,则是首项1,公比为的等比数列;则.19、,【解析】先求导函数,再根据导函数得到单调区间,比较极值和端点值,即可得到最大值和最小值.【详解】解:依题意,,令,得或,所以函数在和上单调递增,在上单调递减,又,,,所以,20、(1)证明见解析;(2)证明见解析.【解析】(1)应用的关系,结合构造法可得,根据已知条件及等比数列的定义即可证结论.(2)由(1)得,再应用错位相减法求,即可证结论.【小问1详解】证明:对任意的,,,时,,解得,时,因为,,两式相减可得:,即有,∴,又,则,因为,,所以,对任意的,,所以,因此,是首项和公比均为3的等比数列【小问2详解】由(1)得:,则,,,两式相减得:,化简可得:,又,∴.21、(1)证明见解析;(2);(3)存在,点在线段上位于靠近点的四等分点处.【解析】(1)证明平面,利用面面垂直的判定定理可证得结论成立;(2)以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量法可求得异面直线与所成角的余弦值;(3)假设存在点,设,其中,利用空间向量法可得出关于的方程,结合的取值范围可求得的值,即可得出结论.【小问1详解】证明:,,为的中点,则且,四边形为平行四边形,.,即,,又平面平面,平面平面,平面,平面平面,平面平面.【小问2详解】解:,为的中点,.平面平面,且平面平面,平面,平面.如图,以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,则、、、、,,,则,,异面直线与所成角的余弦值为.【小问3详解】解:假设存在点,设,其中,所以,,且,设平面法向量为,所以,令,可得,由(2)知平面的一个法向量为,二面角为,则,整理可得,因,解得.故存在点,且点在线段上位于靠近点的四等分点处.22、(1)(2)或【解析】(1)以三棱锥等体积法求点到面距离,思路简单快捷.(2)由直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论