




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省铜仁市思南中学2023年高二上数学期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.用数学归纳法证明“”时,由假设证明时,不等式左边需增加的项数为()A. B.C. D.2.设,,,…,,,则()A. B.C. D.3.已知椭圆的左、右顶点分别为,上、下顶点分别为.点为上不在坐标轴上的任意一点,且四条直线的斜率之积大于,则的离心率的取值范围是()A. B.C. D.4.已知椭圆的左右焦点分别为,,过C上的P作y轴的垂线,垂足为Q,若四边形是菱形,则C的离心率为()A. B.C. D.5.执行如图所示的程序框图,若输出的的值为,则判断框中应填入()A.? B.?C.? D.?6.若,则()A B.C. D.7.已知是上的单调增函数,则的取值范围是A.﹣1b2 B.﹣1b2C.b﹣2或b2 D.b﹣1或b28.直线的斜率是方程的两根,则与的位置关系是()A.平行 B.重合C.相交但不垂直 D.垂直9.设数列的前项和为,数列是公比为2的等比数列,且,则()A.255 B.257C.127 D.12910.已知空间向量,,若,则实数的值是()A. B.0C.1 D.211.已知圆与圆,则两圆的位置关系是()A.外切 B.内切C.相交 D.相离12.在正三棱锥S-ABC中,AB=4,D、E分别是SA、AB中点,且DE⊥CD,则三棱锥S-ABC外接球的体积为()A.π B.πC.π D.π二、填空题:本题共4小题,每小题5分,共20分。13.在空间四边形ABCD中,AD=2,BC=2,E,F分别是AB,CD的中点,EF=,则异面直线AD与BC所成角的大小为____.14.,利用课本中推导等差数列前项和的公式的方法,可求得______15.曲线在点处的切线方程为_____________________.16.如果方程表示焦点在轴上的椭圆,那么实数的取值范围是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆:,过圆外一点作圆的两条切线,,,为切点,设为圆上的一个动点.(1)求的取值范围;(2)求直线的方程.18.(12分)已知椭圆的离心率为,且其左顶点到右焦点的距离为.(1)求椭圆的方程;(2)设点、在椭圆上,以线段为直径的圆过原点,试问是否存在定点,使得到直线的距离为定值?若存在,请求出点坐标;若不存在,请说理由.19.(12分)在平面直角坐标系中,已知圆,点P在圆上,过点P作x轴的垂线,垂足为是的中点,当P在圆M上运动时N形成的轨迹为C(1)求C的轨迹方程;(2)若点,试问在x轴上是否存在点M,使得过点M的动直线交C于两点时,恒有?若存在,求出点M的坐标;若不存在,请说明理由20.(12分)在一次重大军事联合演习中,以点为中心的海里以内海域被设为警戒区域,任何船只不得经过该区域.已知点正北方向海里处有一个雷达观测站,某时刻测得一艘匀速直线行驶的船只位于点北偏东,且与点相距海里的位置,经过小时又测得该船已行驶到位于点北偏东,且与点相距海里的位置(1)求该船的行驶速度(单位:海里/小时);(2)该船能否不改变方向继续直线航行?请说明理由21.(12分)已知双曲线C的方程为(),离心率为.(1)求双曲线的标准方程;(2)过的直线交曲线于两点,求的取值范围.22.(10分)已知,2,4,6中的三个数为等差数列的前三项,且100不在数列中,102在数列中.(1)求数列的通项;(2)设,求数列的前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】当成立,写出左侧的表达式,当时,写出对应的关系式,观察计算即可【详解】从到成立时,左边增加的项为,因此增加的项数是,故选:C2、B【解析】根据已知条件求得的规律,从而确定正确选项.【详解】,,,,,……,以此类推,,所以.故选:B3、A【解析】设,求得,得到,求得,结合,即可求解.【详解】由椭圆的方程,可得,设,则,由,因为四条直线的斜率之积大于,即,所以,则离心率,又因为椭圆离心率,所以椭圆的离心率的取值范围是.故选:A.4、C【解析】根据题意求出P点坐标,代入椭圆方程中,可整理得到关于a,c的等式,进一步整理为关于e的方程,解得答案.【详解】如图示:由题意可知,因为四边形是菱形,所以,则,所以P点坐标为,将P点坐标为代入得:,整理得,故,由于,解得,所以,故选:C.5、C【解析】本题为计算前项和,模拟程序,实际计算求和即可得到的值.【详解】由题意可知:输出的的值为数列的前项和.易知,则,令,解得.即前7项的和.为故判断框中应填入“?”.故选:C.6、D【解析】直接利用向量的坐标运算求解即可【详解】因为,所以,故选:D7、A【解析】利用三次函数的单调性,通过其导数进行研究,求出导数,利用其导数恒大于0即可解决问题【详解】∵∴∵函数是上的单调增函数∴在上恒成立∴,即.∴故选A.【点睛】可导函数在某一区间上是单调函数,实际上就是在该区间上(或)(在该区间的任意子区间都不恒等于0)恒成立,然后分离参数,转化为求函数的最值问题,从而获得参数的取值范围,本题是根据相应的二次方程的判别式来进行求解.8、C【解析】由韦达定理可得方程的两根之积为,从而可知直线、的斜率之积为,进而可判断两直线的位置关系【详解】设方程的两根为、,则直线、的斜率,故与相交但不垂直故选:C9、C【解析】由题设可得,再由即可求值.【详解】由数列是公比为2的等比数列,且,∴,即,∴.故选:C.10、C【解析】根据空间向量垂直的性质进行求解即可.【详解】因为,所以,因此有.故选:C11、A【解析】求得两圆的圆心和半径,再根据圆心距与半径之和半径之差的关系,即可判断位置关系.【详解】对圆,其圆心,半径;对圆,其圆心,半径;又,故两圆外切.故选:A.12、C【解析】取中点,连接,证明平面,得证,然后证明平面,得两两垂直,以为棱把三棱锥补成一个正方体,正方体的对角线是其外接球的直径,而正方体的外接球也是正三棱锥的外接球,由此计算可得【详解】取中点,连接,则,,,平面,所以平面,又平面,所以,D、E分别是SA、AB的中点,则,又,所以,,平面,所以平面,而平面,所以,,是正三棱锥,因此,因此可以为棱把三棱锥补成一个正方体,正方体的对角线是其外接球的直径,而正方体的外接球也是正三棱锥的外接球,由,得,所以所求外接球直径为,半径为,球体积为故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由已知找到异面直线所成角的平面角,再运用余弦定理可得答案.【详解】解:设BD的中点为O,连接EO,FO,所以,则∠EOF(或其补角)就是异面直线AD,BC所成的角的平面角,又因为EO=AD=1,FO=BC=,EF=.根据余弦定理得=-,所以∠EOF=150°,异面直线AD与BC所成角的大小为30°.故答案为:30°.14、2020【解析】先证得,利用倒序相加法求得表达式值.【详解】解:由题意可知,令S=则S=两式相加得,故填:【点睛】本题考查借助倒序相加求函数值的和,属于中档题,解题关键是找到的规律15、【解析】首先判定点在曲线上,然后利用导数的几何意义求得答案.【详解】由题意可知点在曲线上,而,故曲线在点处的切线斜率为,所以切线方程:,即,故答案为:16、【解析】化简椭圆的方程为标准形式,列出不等式,即可求解.【详解】由题意,方程可化为,因为方程表示焦点在轴上的椭圆,可得,解得,实数的取值范围是.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)求出PM,就可以求PQ的范围;(2)使用待定系数法求出切线的方程,再求求切点的坐标,从而可以求切点的连线的方程.【小问1详解】如下图所示,因为圆的方程可化为,所以圆心,半径,且,所以,故取值范围为.【小问2详解】可知切线,中至少一条的斜率存在,设为,则此切线为即,由圆心到此切线的距离等于半径,即,得所以两条切线的方程为和,于是由联立方程组得两切点的坐标为和所以故直线的方程为即18、(1);(2)存在,.【解析】(1)由题设可知求出,再结合,从而可求出椭圆的方程,(2)①若直线与轴垂直,由对称性可知,代入椭圆方程可求得结果,②若直线不与轴垂直,设直线的方程为,将直线方程与椭圆方程联立方程组,消去,然后利用根与系数的关系,设,,再由条件,得,从而得,再利用点到直线的距离公式可求得结果【详解】(1)由题设可知解得,,,所以椭圆的方程为:;(2)设,,①若直线与轴垂直,由对称性可知,将点代入椭圆方程,解得,原点到该直线的距离;②若直线不与轴垂直,设直线的方程为,由消去得,则由条件,即,由韦达定理得,整理得,则原点到该直线的距离;故存在定点,使得到直线的距离为定值.19、(1);(2)不存在,理由见解析.【解析】(1)设,根据中点坐标公式用N的坐标表示P的坐标,将P的坐标代入圆M的方程化简即可得N的轨迹方程;(2)假设存在,设M为(m,0),设直线l斜率为k,表示其方程,l方程和椭圆方程联立,根据韦达定理得根与系数关系,由,得,代入根与系数的关系求k与m关系即可判断.【小问1详解】设,因为N为的中点,,又P点在圆上,,即C轨迹方程为;【小问2详解】不存在满足条件的点M,理由如下:假设存在满足条件的点M,设点M的坐标为,直线的斜率为k,则直线的方程为,由消去y并整理,得,设,则由,得,即,将代入上式并化简,得将式代入上式,有,解得,而,求得点M在椭圆外,若与椭圆无交点不满足条件,所以不存在这样的点M【点睛】本题关键是由得,将几何关系转化为代数关系进行计算.20、(1)海里/小时;(2)该船要改变航行方向,理由见解析.【解析】(1)设一个单位为海里,建立以为坐标原点,正东、正北方向分别为、轴的正方向建立平面直角坐标系,计算出,即可求得该船的行驶速度;(2)求出直线的方程,计算出点到直线的距离,可得出结论.【小问1详解】解:设一个单位为海里,建立以为坐标原点,正东、正北方向分别为、轴的正方向建立如下图所示的平面直角坐标系,则坐标平面中,,且,,则、、,,所以,所以、两地的距离为海里,所以该船行驶的速度为海里/小时.【小问2详解】解:直线的斜率为,所以直线的方程为,即,所以点到直线的距离为,所以直线会与以为圆心,以个单位长为半径的圆相交,因此该船要改变航行方向,否则会进入警戒区域21、(1);(2).【解析】(1)根据题意,结合离心率易,知双曲线为等轴双曲线,进而可求解;(2)根据题意,分直线斜率否存在两种情形讨论,结合设而不求法以及向量数量积的坐标公式,即可求解.【小问1详解】根据题意,由离心率为,知双曲线是等轴双曲线,所以,故双曲线的标准方程为.【小问2详解】当直线斜率存在时,设直线的方程为,则由消去,得到,∵直线与双曲线交于M、N两点,,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 45715.2-2025车辆多媒体系统和设备环视系统第2部分:环视系统的记录方法
- 电子产品检测技术专业教学标准(高等职业教育专科)2025修订
- 2024-2025学年吉林省通化市梅河口五中高二下学期4月月考英语试题及答案
- 智能交通技术专业教学标准(高等职业教育专科)2025修订
- 2025年中国卷巾纸巾行业市场全景分析及前景机遇研判报告
- 税务师考试东奥课件下载
- 税务师考试2021课件
- 2025年中国站式减压器行业市场发展前景及发展趋势与投资战略研究报告
- 中国洁净环境测试仪组合套件仪器箱行业市场调查研究及投资前景展望报告
- 智能控制器培训课件
- 自主招生试题及答案网
- 2025年高考江苏卷物理真题(解析版)
- 2025年重庆市中考化学试卷真题(含标准答案)
- 2024年北京市初中学业水平考试语文试卷及答案
- 电力行业电力运行维护与故障处理知识题库
- 科学技术普及法解读
- 西山煤电招聘笔试题库2025
- 医院院感每月培训管理规范
- T-SCSTA001-2025《四川省好住房评价标准》
- 广西常见中草药知到智慧树期末考试答案题库2025年广西中医药大学
- 岭南建筑介绍课件
评论
0/150
提交评论