版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省广州市2023年高二上数学期末经典模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直线的一个方向向量为,则它的斜率为()A. B.C. D.2.在等差数列中,为其前项和,若.则()A. B.C. D.3.设,直线与直线平行,则()A. B.C. D.4.设函数是定义在上的奇函数,且,当时,有恒成立.则不等式的解集为()A. B.C. D.5.设抛物线的焦点为,准线与轴的交点为,是上一点,若,则()A. B.C. D.6.已知直线在两个坐标轴上的截距之和为7,则实数m的值为()A.2 B.3C.4 D.57.设,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件8.下列双曲线中,以为一个焦点,以为一个顶点的双曲线方程是()A. B.C. D.9.已知斜率为1的直线l过椭圆的右焦点,交椭圆于A,B两点,则弦AB的长为()A. B.C. D.10.已知等比数列各项均为正数,且,,成等差数列,则()A. B.C. D.11.已知命题,命题,,则下列命题中为真命题的是A. B.C. D.12.圆心在x轴负半轴上,半径为4,且与直线相切的圆的方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.从双曲线上一点作轴的垂线,垂足为,则线段中点的轨迹方程为___________.14.若两定点A,B的距离为3,动点M满足,则M点的轨迹围成区域的面积为_________15.已知双曲线的两条渐近线的夹角为,则双曲线的实轴长为____16.下列是某厂1~4月份用水量(单位:百吨)的一组数据,由其散点图可知,用水量与月份之间有较好的线性相关关系,其线性回归方程是,则_______.月份1234用水量4.5432.5三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在等差数列中,记为数列的前项和,已知:.(1)求数列的通项公式;(2)求使成立的的值.18.(12分)已知圆的圆心为,且圆经过点(1)求圆的标准方程;(2)若圆:与圆恰有两条公切线,求实数取值范围19.(12分)已知圆,直线(1)求证:直线与圆恒有两个交点;(2)设直线与圆的两个交点为、,求的取值范围20.(12分)设命题,,命题,.若p、q都为真命题,求实数m的取值范围.21.(12分)已知函数.若图象上的点处的切线斜率为(1)求a,b的值;(2)的极值22.(10分)某企业2021年年初有资金5千万元,由于引进了先进生产设备,资金年平均增长率可达到.每年年底扣除下一年的消费基金1.5千万元后,剩余资金投入再生产.设从2021年的年底起,每年年底企业扣除消费基金后的剩余资金依次为,,,…(1)写出,,,并证明数列是等比数列;(2)至少到哪一年的年底,企业的剩余资金会超过21千万元?(lg
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据的方向向量求得斜率.【详解】且是直线的方向向量,.故选:A2、C【解析】利用等差数列的性质和求和公式可求得的值.【详解】由等差数列的性质和求和公式可得.故选:C.3、C【解析】根据直线平行求解即可.【详解】因为直线与直线平行,所以,即,经检验,满足题意.故选:C4、B【解析】根据当时,可知在上单调递减,结合可确定在上的解集;根据奇偶性可确定在上的解集;由此可确定结果.【详解】,当时,,在上单调递减,,,在上的解集为,即在上的解集为;又为上的奇函数,,为上的偶函数,在上的解集为,即在上的解集为;当时,,不合题意;综上所述:的解集为.故选:.【点睛】本题考查利用函数的单调性和奇偶性求解函数不等式的问题,关键是能够通过构造函数的方式,确定所构造函数的单调性和奇偶性,进而根据零点确定不等式的解集.5、D【解析】求出抛物线的准线方程,可得出点的坐标,利用抛物线的定义可求得点的坐标,再利用两点间的距离公式可求得结果.【详解】易知抛物线焦点为,准线方程为,可得准线与轴的交点,设点,由抛物线的性质,,可得,所以,,解得,即点,所以.故选:D.6、C【解析】求出直线方程在两坐标轴上的截距,列出方程,求出实数m的值.【详解】当时,,故不合题意,故,,令得:,令得:,故,解得:.故选:C7、A【解析】由三角函数的单调性直接判断是否能推出,反过来判断时,是否能推出.【详解】当时,利用正弦函数的单调性知;当时,或.综上可知“”是“”的充分不必要条件.故选:A【点睛】本题考查判断充分必要条件,三角函数性质,意在考查基本判断方法,属于基础题型.8、C【解析】设出双曲线方程,根据题意,求得,即可选择.【详解】因为双曲线的一个焦点是,故可设双曲线方程为,且;又为一个顶点,故可得,解得,则双曲线方程为:.故选:.9、C【解析】根据题意求得直线l的方程,设,联立直线与椭圆的方程,利用韦达定理求得,再利用弦长公式即可得出答案.【详解】由椭圆知,,所以,所以右焦点坐标为,则直线的方程为,设,联立,消y得,,则,所以.即弦AB长为.故选:C.10、A【解析】结合等差数列的性质求得公比,然后由等比数列的性质得结论【详解】设的公比为,因为,,成等差数列,所以,即,,或(舍去,因为数列各项为正)所以故选:A11、D【解析】命题是假命题,命题是真命题,根据复合命题的真值表可判断真假.【详解】因为,故命题是假命题,又命题是真命题,故为假,为假,为假,为真命题,故选D.【点睛】复合命题的真假判断有如下规律:(1)或:一真比真,全假才假;(2)且:全真才真,一假比假;(3):真假相反.12、A【解析】根据题意,设圆心为坐标为,,由直线与圆相切的判断方法可得圆心到直线的距离,解得的值,即可得答案【详解】根据题意,设圆心为坐标为,,圆的半径为4,且与直线相切,则圆心到直线的距离,解得:或13(舍,则圆的坐标为,故所求圆的方程为,故选:A二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】根据题意,设,进而根据中点坐标公式及点P已知双曲线上求得答案.【详解】由题意,设,则,则,即,因为,则,即的轨迹方程为.14、【解析】建立如图直角坐标系,设点,根据题意和两点坐标求距离公式可得,结合圆的面积公式计算即可.【详解】以点A为坐标原点,射线AB为x轴的非负半轴建立直角坐标系,如图,设点,则,由,化简并整理得:,于是得点M轨迹是以点为圆心,2为半径的圆,其面积为,所以M点的轨迹围成区域的面积为.故答案为:15、【解析】根据已知条件求得,由此求得实轴长.【详解】由于,双曲线的渐近线方程为,所以双曲线的渐近线与轴夹角小于,由得,实轴长故答案为:16、25【解析】根据表格数据求出,代入,即可求出.【详解】解:由题意知:,,将代入线性回归方程,即,解得:.故答案为:5.25.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)或.【解析】(1)根据给定条件求出数列的公差及首项即可计算作答.(2)由(1)求出,建立方程求解作答.【小问1详解】设等差数列公差为,因,则,解得,于是得,所以数列的通项公式为:.【小问2详解】由(1)知,,由得:,即,解得或,所以使成立的的值是或.18、(1);(2).【解析】(1)根据给定条件求出圆C的半径,再直接写出方程作答.(2)由给定条件可得圆C与圆O相交,由此列出不等式求解作答.【小问1详解】依题意,圆C的半径,所以圆的标准方程是:.【小问2详解】圆:圆心,半径为,因圆与圆恰有两条公切线,则有圆O与圆C相交,即,而,因此有,解得,所以实数的取值范围是.19、(1)证明见解析(2)【解析】(1)根据直线的方程可得直线经过定点,而点到圆心的距离小于半径,故点在圆的内部,由此即可证明结果(2)由圆的性质可知,当过圆心时,取最大值,当和过的直径垂直时,取最小值,由此即可求出结果.【小问1详解】证明:由于直线,即令,解得,所以恒过点,所以,所以点在圆内,所以直线与圆恒有两个交点;【小问2详解】解:当过圆心时,取最大值,即圆的直径,由圆的半径,所以的最大值为;当和过的直径垂直时,取最小值,此时圆心到的距离,所以,故的最小值为综上,的取值范围.20、【解析】先求出命题为真时,的取值范围,再取交集可得答案.【详解】若命题,为真命题,则,解得;若命题,为真命题,则命题,为假命题,即方程无实数根,因此,,解得.又p、q都为真命题,所以实数m的取值范围是.【点睛】本题考查全称命题与特称命题的真假求参数值、一元二次函数的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力.21、(1)(2)极大值为,极小值为【解析】(1)求出函数的导函数,再根据图象上的点处的切线斜率为,列出方程组,解之即可得解;(2)求出函数的导函数,根据导函数的符号求得函数的单调区间,再根据极值的定义即可得解.【小问1详解】解:,,;【小问2详解】解:由(1)得,令,得或,,-1(-1,3)3+0-0+的极大
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度大蒜购销合同:种植户与采购商协议3篇
- 标准软件许可及技术支持合同(04版)
- 玻璃制品物流配送服务协议04
- 标准设备租赁合同04年专用
- 二零二四年度电子合同信息化建设咨询服务合同
- 店长入股合作协议书
- 二零二四年度研发合作合同研发费(04版)
- 二零二四年度设备维修保养合同(含设备型号和保养内容)
- 二零二四年度影视制作合同标的、属性及分成比例
- 二零二四年度特许经营合同标的及经营范围详细描述
- 2024版肺结核治疗指南
- 江苏省无锡市经开区2024-2025学年上学期九年级期中考试数学试题
- 2024年智能化工程专业分包合同
- 六年级道德与法治上册 第三单元 我们的国家机构 5《国家机构有哪些》教案2 新人教版
- 2024-2030年版中国测绘行业发展机遇分析及投资策略研究报告
- 《雨污水管道施工方案》
- 体育场馆安全管理与风险排查治理制度
- 2024年中国建筑预制件市场调查研究报告
- 2024年消防安全知识培训
- 2024年商标使用许可协议:国际知名品牌在中国市场授权
- 《学前教育法》是学前教育工作者的新征程
评论
0/150
提交评论