![福建省三明市普通高中2024届高二数学第一学期期末复习检测试题含解析_第1页](http://file4.renrendoc.com/view/2ff1a755a1268430703b43e31300c614/2ff1a755a1268430703b43e31300c6141.gif)
![福建省三明市普通高中2024届高二数学第一学期期末复习检测试题含解析_第2页](http://file4.renrendoc.com/view/2ff1a755a1268430703b43e31300c614/2ff1a755a1268430703b43e31300c6142.gif)
![福建省三明市普通高中2024届高二数学第一学期期末复习检测试题含解析_第3页](http://file4.renrendoc.com/view/2ff1a755a1268430703b43e31300c614/2ff1a755a1268430703b43e31300c6143.gif)
![福建省三明市普通高中2024届高二数学第一学期期末复习检测试题含解析_第4页](http://file4.renrendoc.com/view/2ff1a755a1268430703b43e31300c614/2ff1a755a1268430703b43e31300c6144.gif)
![福建省三明市普通高中2024届高二数学第一学期期末复习检测试题含解析_第5页](http://file4.renrendoc.com/view/2ff1a755a1268430703b43e31300c614/2ff1a755a1268430703b43e31300c6145.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省三明市普通高中2024届高二数学第一学期期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.方程表示的曲线是()A.一个椭圆和一条直线 B.一个椭圆和一条射线C.一条射线 D.一个椭圆2.函数的图像大致是()A B.C. D.3.已知圆,则圆上的点到坐标原点的距离的最小值为()A.-1 B.C.+1 D.64.在空间直角坐标系中,方程所表示的图形是()A圆 B.椭圆C.双曲线 D.球5.已知函数,那么的值为()A. B.C. D.6.已知抛物线的焦点为,在抛物线上有一点,满足,则的中点到轴的距离为()A. B.C. D.7.下列说法中正确的是()A.命题“若,则”的否命题是真命题;B.若为真命题,则为真命题;C.“”是“”的充分条件;D.若命题:“,”,则:“,”8.函数在上单调递增,则k的取值范围是()A B.C. D.9.在中,若,,,则此三角形解的情况为()A.无解 B.两解C.一解 D.解的个数不能确定10.设等差数列前项和为,若是方程的两根,则()A.32 B.30C.28 D.2611.已知函数与,则它们的图象交点个数为()A.0 B.1C.2 D.不确定12.设正实数,满足(其中为正常数),若的最大值为3,则()A.3 B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.等差数列中,若,,则______,数列的前n项和为,则______14.长方体中,,,已知点H,A,三点共线,且,则点H到平面ABCD的距离为______15.已知点是抛物线的焦点,点分别是抛物线上位于第一、四象限的点,若,则的面积为__________.16.抛物线的焦点坐标是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知中,分别为角的对边,且(1)求;(2)若为边的中点,,求的面积18.(12分)在平面直角坐标系xOy中,已知椭圆E:(a>b>0)的左、右焦点分别为F1,F2,离心率为.点P是椭圆上的一动点,且P在第一象限.记的面积为S,当时,.(1)求椭圆E的标准方程;(2)如图,PF1,PF2的延长线分别交椭圆于点M,N,记和的面积分别为S1和S2.(i)求证:存在常数λ,使得成立;(ii)求S2-S1的最大值.19.(12分)已知数列的各项均为正数,,为自然对数的底数(1)求函数的单调区间,并比较与的大小;(2)计算,,,由此推测计算的公式,并给出证明;20.(12分)某城市100户居民的月平均用电量(单位:度),以,,,,,,分组的频率分布直方图如图(1)求直方图中的值;(2)求月平均用电量的众数和中位数21.(12分)如图1,在中,,,,分别是,边上的中点,将沿折起到的位置,使,如图2(1)求点到平面距离;(2)在线段上是否存在一点,使得平面与平面夹角的余弦值为.若存在,求出长;若不存在,请说明理由22.(10分)已知数列是公比为2的等比数列,是与的等差中项(1)求数列的通项公式;(2)若,求数列的前n项和
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据题意得到或,即可求解.【详解】由方程,可得或,即或,所以方程表示的曲线为一个椭圆或一条直线.故选:A.2、B【解析】由函数有两个零点排除选项A,C;再借助导数探讨函数的单调性与极值情况即可判断作答.【详解】由得,或,选项A,C不满足;由求导得,当或时,,当时,,于是得在和上都单调递增,在上单调递减,在处取极大值,在处取极小值,D不满足,B满足.故选:B3、A【解析】先求出圆心和半径,求出圆心到坐标原点的距离,从而求出圆上的点到坐标原点的距离的最小值.【详解】变形为,故圆心为,半径为1,故圆心到原点的距离为,故圆上的点到坐标原点的距离最小值为.故选:A4、D【解析】方程表示空间中的点到坐标原点的距离为2,从而可知图形的形状【详解】由,得,表示空间中的点到坐标原点的距离为2,所以方程所表示的图形是以原点为球心,2为半径的球,故选:D5、D【解析】直接求导,代入计算即可.【详解】,故.故选:D.6、A【解析】设点,利用抛物线的定义求出的值,可求得点的横坐标,即可得解.【详解】设点,易知抛物线的焦点为,由抛物线的定义可得,得,所以,点的横坐标为,故点到轴的距离为.故选:A.7、C【解析】A.写出原命题的否命题,即可判断其正误;B.根据为真命题可知的p,q真假情况,由此判断的真假;C.看命题“”能否推出“”,即可判断;D.根据含有一个量词的命题的否定的要求,即可判断该命题的正误.【详解】A.命题“若x=y,则sinx=siny”,其否命题为若“,则”为假命题,因此A不正确;B.命题“”为真命题,则p,q中至少有一个为真命题,当二者为一真一假时,为假命题,故B不正确C.命题“若,则”为真命题,故C正确;D.命题:“,”,为特称命题,其命题的否定:“,”,故D错误,故选:C8、A【解析】对函数求导,由于函数在给定区间上单调递增,故恒成立.【详解】由题意可得,,,,.故选:A9、C【解析】求出的值,结合大边对大角定理可得出结论.【详解】由正弦定理可得可得,因为,则,故为锐角,故满足条件的只有一个.故选:C.10、A【解析】根据给定条件利用韦达定理结合等差数列性质计算作答.【详解】因是方程的两根,则又是等差数列的前项和,于是得,所以.故选:A11、B【解析】令,判断的单调性并计算的极值,根据极值与0的大小关系判断的零点个数,得出答案.【详解】令,则,由,得,∴当时,,当时,.∴当时,取得最小值,∴只有一个零点,即与的图象只有1个交点.故选:B.12、D【解析】由于,,为正数,且,所以利用基本不等式可求出结果【详解】解:因为正实数,满足(其中为正常数),所以,则,所以,所以故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、①.②.【解析】设等差数列公差为d,根据等差数列的性质即可求通项公式;,采用裂项相消的方法求.【详解】设等差数列公差为d,,,;∵,∴.故答案为:;.14、【解析】在长方体中,以点A为原点建立空间直角坐标系,利用已知条件求出点H的坐标作答.【详解】在长方体中,以点A为原点建立如图所示的空间直角坐标系,则,,因点H,A,三点共线,令,点,则,又,则,解得,所以点到平面ABCD的距离为.故答案为:15、42【解析】由焦半径公式求得参数,得抛物线方程,从而可求得两点纵坐标,再求得直线与轴的交点坐标后可得面积【详解】因为,所以,抛物线的方程为,把代入方程,得(舍去),即.同理,直线方程为,即.所以直线与轴交于点,所以.故答案为:4216、【解析】将抛物线的方程化为标准形式,即可求解出焦点坐标.【详解】因为抛物线方程,焦点坐标为,且,所以焦点坐标为,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)利用正弦定理化边为角可得,化简可得,结合,即得解;(2)在中,由余弦定理得,可得,利用面积公式即得解【详解】(1)中由正弦定理及条件,可得,∵,,∴,∵,∴,或,又∵,∴,∴,,∴(2)为边的中点,,,得,中,由余弦定理得,∴,∴,∵,∴,18、(1)(2)(i)存在常数,使得成立;(ii)的最大值为.【解析】(1)求点P的坐标,再利用面积和离心率,可以求出,然后就可以得到椭圆的标准方程;(2)设点的坐标和直线方程,联立方程,解出的y坐标值与P的坐标之间的关系,求以焦距为底边的三角形面积;利用均值定理当且仅当时取等号,求最大值.【小问1详解】先求第一象限P点坐标:,所以P点的坐标为,所以,所以椭圆E的方程为【小问2详解】设,易知直线和直线的坐标均不为零,因为,所以设直线的方程为,直线的方程为,由所以,因为,,所以所以同理由所以,因为,,所以所以,因为,,(i)所以所以存在常数,使得成立.(ii),当且仅当,时取等号,所以的最大值为.19、(1)的单调递增区间为,单调递减区间为;(2)详见解析【解析】(1)求出的定义域,利用导数求其最大值,得到,取即可得出答案.(2)由,变形求得,,,由此推测:然后用数学归纳法证明即可.【小问1详解】的定义域为,当,即时,单调递增;当,即时,单调递减故的单调递增区间为,单调递减区间为当时,,即令,得,即【小问2详解】;;由此推测:①下面用数学归纳法证明①(1)当时,左边右边,①成立(2)假设当时,①成立,即当时,,由归纳假设可得所以当时,①也成立根据(1)(2),可知①对一切正整数都成立20、(1);(2)众数是,中位数为【解析】(1)利用频率之和为一可求得的值;(2)众数为最高小矩形底边中点的横坐标;中位数左边和右边的直方图的面积相等可求得中位数试题解析:(1)由直方图的性质可得,∴(2)月平均用电量的众数是,∵,月平均用电量的中位数在内,设中位数为,由,可得,∴月平均用电量的中位数为224考点:频率分布直方图;中位数;众数21、(1)(2)存在,【解析】(1)根据题意分别由已知条件计算出的面积和的面积,利用求解,(2)如图建立空间直角坐标系,设,然后求出平面与平面的法向量,利用向量平夹角公式列方程可求得结果【小问1详解】在中,,因为,分别是,边上的中点,所以∥,,所以,所以,因为,所以平面,所以平面,因为平面,所以,所以,因为平面,平面,所以平面平面,因为,所以,因为,所以是等边三角形,取的中点,连接,则,,因为平面平面,平面平面,平面,所以平面,在中,,所以边上的高为,所以,在梯形中,,设点到平面的距离为,因为,所以,所以,得,所以点到平面的距离为【小问2详解】由(1)可知平面,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度货运司机薪酬福利合同模板
- 二零二五年度内墙抹灰劳务工程进度管理合同范本
- 二零二五年度水利工程砂石料环保合同范本3篇
- 二零二五年度生态旅游区建设外包工程环保管理合同
- 二零二五年度高级研发人员聘用合同模板
- 2025年全球及中国电动宠物磨甲器行业头部企业市场占有率及排名调研报告
- 2025年全球及中国车载触摸屏传感器面板行业头部企业市场占有率及排名调研报告
- 二零二五年度工程保险合同服务内容详细描述2篇
- 二零二五年度外贸独家代理合同中的市场准入与竞争限制
- 医药行业股权转让居间合同
- 铜矿隐蔽致灾普查治理工作计划
- 《民航安全检查(安检技能实操)》课件-第一章 民航安全检查员职业道德
- 学校食品安全教育学习活动食品安全讲座课件
- DB34T4826-2024畜禽养殖业污染防治技术规范
- 腰麻课件教学课件
- 石油化工企业环境保护管理制度预案
- 2024年甘肃省高考历史试卷(含答案解析)
- 2024年山东省烟台市初中学业水平考试地理试卷含答案
- 抗肿瘤治疗所致恶心呕吐护理
- 2024年广东省中考地理试题(含解析)
- 西安经济技术开发区管委会招聘考试真题
评论
0/150
提交评论