北京市海淀区第二十中学2023-2024学年高二数学第一学期期末联考模拟试题含解析_第1页
北京市海淀区第二十中学2023-2024学年高二数学第一学期期末联考模拟试题含解析_第2页
北京市海淀区第二十中学2023-2024学年高二数学第一学期期末联考模拟试题含解析_第3页
北京市海淀区第二十中学2023-2024学年高二数学第一学期期末联考模拟试题含解析_第4页
北京市海淀区第二十中学2023-2024学年高二数学第一学期期末联考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市海淀区第二十中学2023-2024学年高二数学第一学期期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.双曲线的离心率是,则双曲线的渐近线方程是()A. B.C. D.2.设抛物线上一点到轴的距离是4,则点到该抛物线焦点的距离是()A.6 B.8C.9 D.103.曲线与曲线()的()A.长轴长相等 B.短轴长相等C.离心率相等 D.焦距相等4.已知双曲线(,)的左、右焦点分别为,,.若双曲线M的右支上存在点P,使,则双曲线M的离心率的取值范围为()A. B.C. D.5.在空间直角坐标系下,点关于平面的对称点的坐标为()A. B.C. D.6.抛掷两枚质地均匀的硬币,设事件“第一枚硬币正面朝上”,事件“第二枚硬币反面朝上”,则下列结论中正确的为()A.与互为对立事件 B.与互斥C与相等 D.7.已知集合A={x|-2≤x≤0},B={-2,-1,0,1},则A∩B=()A.{-2,-1,0,1} B.{-1,0,1}C.{-2,-1} D.{-2,-1,0}8.在中,,满足条件的三角形的个数为()A.0 B.1C.2 D.无数多9.已知直线与直线平行,则实数a值为()A.1 B.C.1或 D.10.2018年,伦敦著名的建筑事务所steynstudio在南非完成了一个惊艳世界的作品一一双曲线建筑的教堂,白色的波浪形屋顶像翅膀一样漂浮,建筑师通过双曲线的设计元素赋予了这座教堂轻盈,极简和雕塑般的气质,如图.若将此大教堂外形弧线的一段近似看成焦点在y轴上的双曲线下支的一部分,且该双曲线的上焦点到下顶点的距离为18,到渐近线距离为12,则此双曲线的离心率为()A. B.C. D.11.双曲线的光学性质如下:如图1,从双曲线右焦点发出的光线经双曲线镜面反射,反射光线的反向延长线经过左焦点.我国首先研制成功的“双曲线新闻灯”,就是利用了双曲线的这个光学性质.某“双曲线灯”的轴截面是双曲线一部分,如图2,其方程为,分别为其左、右焦点,若从右焦点发出的光线经双曲线上的点A和点B反射后(,A,B在同一直线上),满足,则该双曲线的离心率的平方为()A. B.C. D.12.已知函数的图象在点处的切线与直线垂直,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.过点与直线平行的直线的方程是________.14.已知向量,,且,则实数______.15.已知椭圆的右顶点为,直线与椭圆交于两点,若,则椭圆的离心率为___________.16.一道数学难题,在半小时内,甲能解决的概率是,乙能解决的概率是,两人试图独立地在半小时内解决它,则问题得到解决的概率是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知命题;命题.(1)若p是q的充分条件,求m的取值范围;(2)当时,已知是假命题,是真命题,求x的取值范围.18.(12分)已知数列中,,().(1)求证:是等比数列,并求的通项公式;(2)数列满足,求数列的前项和为.19.(12分)(1)已知集合,.:,:,并且是的充分条件,求实数的取值范围(2)已知:,,:,,若为假命题,求实数的取值范围20.(12分)某公交公司为了方便市民出行,科学规划车辆投放,在一个人员密集流动地段增设一个起点站,为了研究车辆发车间隔时间x与乘客等候人数y之间的关系,经过调查得到如下数据:间隔时间x/分101112131415等候人数y/人232526292831调查小组先从这6组数据中选取4组数据求线性回归方程,再用剩下的2组数据进行检验.检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数,再求与实际等候人数y的差,若差值的绝对值都不超过1,则称所求方程是“恰当回归方程”.(1)若选取的是中间4组数据,求y关于x的线性回归方程=x+,并判断此方程是否是“恰当回归方程”.(2)假设该起点站等候人数为24人,请你根据(1)中的结论预测车辆发车间隔多少时间合适?附:对于一组数据(x1,y1),(x2,y2),(xn,yn),其回归直线=x+的斜率和截距的最小二乘估计分别为21.(12分)新型冠状病毒的传染主要是人与人之间进行传播,感染人群年龄大多数是岁以上人群.该病毒进入人体后有潜伏期.潜伏期是指病原体侵入人体至最早出现临床症状的这段时间.潜伏期越长,感染到他人的可能性越高.现对个病例的潜伏期(单位:天)进行调查,统计发现潜伏期平均数为,方差为.如果认为超过天的潜伏期属于“长潜伏期”,按照年龄统计样本,得到下面的列联表:年龄/人数长期潜伏非长期潜伏50岁以上6022050岁及50岁以下4080(1)是否有的把握认为“长期潜伏”与年龄有关;(2)假设潜伏期服从正态分布,其中近似为样本平均数,近似为样本方差.(i)现在很多省市对入境旅客一律要求隔离天,请用概率知识解释其合理性;(ii)以题目中的样本频率估计概率,设个病例中恰有个属于“长期潜伏”的概率是,当为何值时,取得最大值.附:0.10.050.0102.7063.8416.635若,则,,.22.(10分)已知p:关于x的方程至多有一个实数解,.(1)若命题p为真命题,求实数a的取值范围;(2)若p是q的充分不必要条件,求实数m的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】利用双曲线的离心率,以及渐近线中,关系,结合找关系即可【详解】解:,又因为在双曲线中,,所以,故,所以双曲线的渐近线方程为,故选:B2、A【解析】计算抛物线的准线,根据距离结合抛物线的定义得到答案.【详解】抛物线的焦点为,准线方程为,到轴的距离是4,故到准线的距离是,故点到该抛物线焦点的距离是.故选:A.3、D【解析】分别求出两椭圆的长轴长、短轴长、离心率、焦距,即可判断.【详解】曲线表示焦点在轴上,长轴长为,短轴长为,离心率为,焦距为;曲线表示焦点在轴上,长轴长为,短轴长为,离心率为,焦距为.对照选项可知:焦距相等.故选:D.4、A【解析】利用三角形正弦定理结合,用a,c表示出,再由点P的位置列出不等式求解即得.【详解】依题意,点P不与双曲线顶点重合,在中,由正弦定理得:,因,于是得,而点P在双曲线M的右支上,即,从而有,点P在双曲线M的右支上运动,并且异于顶点,于是有,因此,,而,整理得,即,解得,又,故有,所以双曲线M的离心率的取值范围为.故选:A5、C【解析】根据空间坐标系中点的对称关系求解【详解】点关于平面的对称点的坐标为,故选:C6、D【解析】利用互斥事件和对立事件的定义分析判断即可【详解】因为抛掷两枚质地均匀的硬币包含第一枚硬币正面朝上第二枚硬币正面朝上,第一枚硬币正面朝上第二枚硬币反面朝上,第一枚硬币反面朝上第二枚硬币正面朝上,第一枚硬币反面朝上第二枚硬币反面朝上,4种情况,其中事件包含第一枚硬币正面朝上第二枚硬币正面朝上,第一枚硬币正面朝上第二枚硬币反面朝上2种情况,事件包含第一枚硬币正面朝上第二枚硬币反面朝上,第一枚硬币反面朝上第二枚硬币反面朝上2种情况,所以与不互斥,也不对立,也不相等,,所以ABC错误,D正确,故选:D7、D【解析】根据集合交集的运算法则计算即可.【详解】∵A={x|-2≤x≤0},B={-2,-1,0,1},则A∩B={-2,-1,0}.故选:D.8、B【解析】利用正弦定理得到,进而或,由,得,即可求解【详解】由正弦定理得,,或,,,故满足条件的有且只有一个.故选:B9、A【解析】根据两直线平行的条件列方程,化简求得,检验后确定正确答案.【详解】由于直线与直线平行,所以,或,当时,两直线方程都为,即两直线重合,所以不符合题意.经检验可知符合题意.故选:A10、A【解析】设出双曲线的方程,根据已知条件列出方程组即可求解.【详解】设双曲线的方程为,由双曲线的上焦点到下顶点的距离为18,即,上焦点的坐标为,其中一条渐近线为,上焦点到渐近线的距离为,则,解得,,即,故选:.11、D【解析】设,根据题意可得,由双曲线定义得、,进而求出(用表示),然后在中,应用勾股定理得出关系,求得离心率【详解】易知共线,共线,如图,设,则.因为,所以,则,则,又因为,所以,则,在中,,即,所以.故选:D12、C【解析】对函数求导,利用导数的几何意义结合垂直关系计算作答.【详解】函数定义域为,求导得,于是得函数的图象在点处切线的斜率,而直线的斜率为,依题意,,即,解得,所以.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据给定条件设出所求直线方程,利用待定系数法求解即得.【详解】设与直线平行的直线的方程为,而点在直线上,于是得,解得,所以所求的直线的方程为.故答案为:14、【解析】利用向量平行的条件直接解出.【详解】因为向量,,且,所以,解得.故答案为:.15、【解析】求出右顶点坐标,然后推出的纵坐标,利用已知条件列出方程,求解椭圆的离心率即可【详解】解:椭圆的右顶点为,直线与椭圆交于,两点,若,可知,不妨设在第一象限,所以的纵坐标为:,可得:,即,可得,,所以故答案为:16、【解析】分甲解决乙不能解决,甲不能解决乙能解决,甲能解决乙也能解决三类,利用独立事件的概率求解.【详解】因为甲能解决的概率是,乙能解决的概率是,所以问题得到解决的概率是,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)解不等式组即得解;(2)由题得p、q一真一假,分两种情况讨论得解.【小问1详解】解:由题意知p是q的充分条件,即p集合包含于q集合,有;【小问2详解】解:当时,有,由题意知,p、q一真一假,当p真q假时,,当p假q真时,,综上,x的取值范围为18、(1)(2)【解析】由已知式子变形可得是以为首项,为公比的等比数列,由等比数列的通项公式易得利用错位相减法,得到数列的前项和为解析:(1)由,()知,又,∴是以为首项,为公比的等比数列,∴,∴(2),,两式相减得,∴点睛:本题主要考查数列的证明,错位相减法等基础知识,考查学生的分析问题解决问题的能力,转化能力和计算能力.第一问中将已知的递推公式进行变形,转化为的形式来证明,还可以根据等比数列的定义来证明;第二问,将第一问中得到的结论代入,先得到的表达式,利用错位相减法,即可得到数列的前项和为19、(1);(2)【解析】(1)由二次函数的性质,求得,又由,求得集合,根据命题是命题的充分条件,所以,列出不等式,即可求解(2)依题意知,均为假命题,分别求得实数的取值范围,即可求解【详解】(1)由,∵,∴,,∴,所以集合,由,得,所以集合,因为命题是命题的充分条件,所以,则,解得或,∴实数的取值范围是.(2)依题意知,,均为假命题,当是假命题时,恒成立,则有,当是假命题时,则有,或.所以由均为假命题,得,即.【点睛】本题主要考查了复合命题的真假求参数,以及充要条件的应用,其中解答中正确得出集合间的关系,列出不等式,以及根据复合命题的真假关系求解是解答的关键,着重考查了推理与运算能力,属于基础题20、(1),是“恰当回归方程”;(2)10分钟较合适.【解析】(1)应用最小二乘法求出回归直线方程,再分别估计、时的值,结合“恰当回归方程”的定义判断是否为“恰当回归方程”.(2)根据(1)所得回归直线方程,将代入求x值即可.【小问1详解】中间4组数据是:间隔时间(分钟)11121314等候人数(人)25262928因为,所以,故,又,所以,当时,,而;当时,,而;所以所求的线性回归方程是“恰当回归方程”;【小问2详解】由(1)知:当时,,所以预测车辆发车间隔时间10分钟较合适.21、(1)有;(2)(i)答案见解析;(ii)250.【解析】(1)根据列联表中的数据,利用求得,与临界表值对比下结论;(2)(ⅰ)根据,利用小概率事件判断;(ⅱ)易得一个患者属于“长潜伏期”的概率是,进而得到,然后判断其单调性求解.【详解】(1)依题意有,由于,故有的把握认为“长期潜伏”与年龄有关;(2)(ⅰ)若潜伏期,由,得知潜伏期超过天的概率很低,因此隔离天是合理的;(ⅱ)由于个病例中有个属于长潜伏期,若以样本频率估计概率,一个患者属于“长潜伏期”的概率是,于是,则,,当时,;当时,;∴,.故当时,取得最大值.【点睛】方法点睛:利用独立重复试验概率公式可以简化求概率的过程,但需要注意检查该

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论