福建省龙岩市连城一中2023-2024学年高二数学第一学期期末学业质量监测试题含解析_第1页
福建省龙岩市连城一中2023-2024学年高二数学第一学期期末学业质量监测试题含解析_第2页
福建省龙岩市连城一中2023-2024学年高二数学第一学期期末学业质量监测试题含解析_第3页
福建省龙岩市连城一中2023-2024学年高二数学第一学期期末学业质量监测试题含解析_第4页
福建省龙岩市连城一中2023-2024学年高二数学第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省龙岩市连城一中2023-2024学年高二数学第一学期期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若函数在上为单调增函数,则m的取值范围()A. B.C. D.2.若抛物线的焦点与椭圆的左焦点重合,则m的值为()A.4 B.-4C.2 D.-23.已知F1(-1,0),F2(1,0)是椭圆的两个焦点,过F1的直线l交椭圆于M,N两点,若△MF2N的周长为8,则椭圆方程为()A. B.C. D.4.如图,面积为的正方形中有一个不规则的图形,可按下面方法估计的面积:在正方形中随机投掷个点,若个点中有个点落入中,则的面积的估计值为,假设正方形的边长为,的面积为,并向正方形中随机投掷个点,用以上方法估计的面积时,的面积的估计值与实际值之差在区间内的概率为附表:A. B.C. D.5.已知F(3,0)是椭圆的一个焦点,过F且垂直x轴的弦长为,则该椭圆的方程为()A.+=1 B.+=1C.+=1 D.+=16.若数列为等差数列,数列为等比数列,则下列不等式一定成立的是()A. B.C. D.7.执行如图所示的程序框图,若输出的,则输人的()A. B.或C. D.或8.已知直线l,m,平面α,β,,,则是的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件9.已知命题,;命题,,那么下列命题为假命题的是()A. B.C. D.10.过点且与双曲线有相同渐近线的双曲线方程为()A B.C. D.11.已知函数对于任意的满足,其中是函数的导函数,则下列各式正确的是()A. B.C. D.12.设,则“”是“直线与直线”平行的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.即不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.直线恒过定点,则定点坐标为________14.不透明袋中装有完全相同,标号分别为1,2,3,…,8的八张卡片.从中随机取出3张.设X为这3张卡片的标号相邻的组数(例如:若取出卡片的标号为3,4,5,则有两组相邻的标号3、4和4、5,此时X的值是2).则随机变量X的数学期望______15.正方体,点分别是的中点,则异面直线与所成角的余弦值为___________.16.在公差不为0的等差数列中,为其前n项和,若,则正整数______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此做了四次试验,得到的数据如表:零件的个数x(个)2345加工的时间y(小时)2.5344.5(1)在给定的坐标系中画出表中数据的散点图.(2)求出y关于x的线性回归方程,试预测加工10个零件需要多少小时?(注:,)18.(12分)已知椭圆:,是坐标原点,,分别为椭圆的左、右焦点,点在椭圆上,过作的外角的平分线的垂线,垂足为,且(1)求椭圆方程:(2)设直线:与椭圆交于,两点,且直线,,的斜率之和为0(其中为坐标原点)①求证:直线经过定点,并求出定点坐标:②求面积的最大值19.(12分)红铃虫是棉花的主要害虫之一,也侵害木棉、锦葵等植物.为了防治虫害,从根源上抑制害虫数量.现研究红铃虫的产卵数和温度的关系,收集到7组温度和产卵数的观测数据于表Ⅰ中.根据绘制的散点图决定从回归模型①与回归模型②中选择一个来进行拟合表Ⅰ温度x/℃20222527293135产卵数y/个711212465114325(1)请借助表Ⅱ中的数据,求出回归模型①的方程:表Ⅱ(注:表中)18956725.271627810611.06304041.86825.09(2)类似的,可以得到回归模型②的方程为,试求两种模型下温度为时的残差;(3)若求得回归模型①的相关指数,回归模型②的相关指数,请结合(2)说明哪个模型的拟合效果更好参考数据:.附:回归方程中,相关指数.20.(12分)已知数列中,,且(1)求证:数列是等差数列,并求出;(2)数列前项和为,求21.(12分)已知数列的前n项和为,满足,(1)求证:数列是等比数列,并求数列的通项公式;(2)设,为数列的前n项和,①求;②若不等式对任意的正整数n恒成立,求实数的取值范围22.(10分)在中,角的对边分别为,已知,,且.(1)求角的大小;(2)若,面积为,试判断的形状,并说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】用函数单调性确定参数,使用参数分离法即可.【详解】,在上是增函数,即恒成立,;设,;∴时,是增函数;时,是减函数;故时,,∴;故选:B.2、B【解析】根据抛物线和椭圆焦点与其各自标准方程的关系即可求解.【详解】由题可知抛物线焦点为,椭圆左焦点为,∴.故选:B.3、A【解析】由题得c=1,再根据△MF2N的周长=4a=8得a=2,进而求出b的值得解.【详解】∵F1(-1,0),F2(1,0)是椭圆的两个焦点,∴c=1,又根据椭圆的定义,△MF2N的周长=4a=8,得a=2,进而得b=,所以椭圆方程为.故答案为A【点睛】本题主要考查椭圆的定义和椭圆方程的求法,意在考查学生对这些知识的掌握水平和分析推理能力.4、D【解析】每个点落入中的概率为,设落入中的点的数目为,题意所求概率为故选D5、C【解析】根据已知条件求得,由此求得椭圆的方程.【详解】依题意,所以椭圆方程为.故选:C6、D【解析】对选项A,令即可检验;对选项B,令即可检验;对选项C,令即可检验;对选项D,设出等差数列的首项和公比,然后作差即可.【详解】若,则可得:,故选项A错误;若,则可得:,故选项B错误;若,则可得:,故选项C错误;不妨设的首项为,公差为,则有:则有:,故选项D正确故选:D7、A【解析】根据题意可知该程序框图显示的算法函数为,分和两种情况讨论即可得解.【详解】解:该程序框图显示得算法函数为,由,当时,,方程无解;当时,,解得,综上,若输出的,则输入的.故选:A.8、A【解析】由题意可知,已知,,则可以推出,反之不成立.【详解】已知,,则可以推出,已知,,则不可以推出.故是的充分不必要条件.故选:A.9、B【解析】由题设命题的描述判断、的真假,再判断其复合命题的真假即可.【详解】对于命题,仅当时,故为假命题;对于命题,由且开口向上,故为真命题;所以为真命题,为假命题,综上,为真,为假,为真,为真.故选:B10、C【解析】设与双曲线有相同渐近线的双曲线方程为,代入点的坐标,求出的值,即可的解.【详解】设与双曲线有相同渐近线的双曲线方程为,代入点,得,解得,所以所求双曲线方程为,即故选:C.11、C【解析】令,结合题意可得,利用导数讨论函数的单调性,进而得出,变形即可得出结果.【详解】令,则,又,所以,令,令,所以函数在上单调递减,在单调递增,所以,即,则.故选:C12、D【解析】由两直线平行确定参数值,根据充分必要条件的定义判断【详解】时,两直线方程分别为,,它们重合,不平行,因此不是充分条件;反之,两直线平行时,,解得或,由上知时,两直线不平行,时,两直线方程分别为,,平行,因此,本题中也不是必要条件故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】解方程组可求得定点坐标.【详解】直线方程可化为,由,可得.故直线恒过定点.故答案为:.14、##【解析】设为这3张卡片的标号相邻的组数,则的可能取值为0,1,2,利用列举法分别求出相应的概率,由此能求出随机变量的数学期望【详解】解:不透明袋中装有完全相同,标号分别为1,2,3,,8的八张卡片从中随机取出3张,共有种,设为这3张卡片的标号相邻的组数,则的可能取值为0,1,2,的情况有:,2,,,3,,,4,,,5,,,6,,,7,,共6个,,的情况有:取,另外一个数有5种取法;取,另外一个数有4种取法;取,另外一个数有4种取法;取,另外一个数有4种取法;取,另外一个数有4种取法;取,另外一个数有4种取法;取,另外一个数有5种取法的情况一共有:,,,随机变量的数学期望:故答案为:15、【解析】以为坐标原点建立空间直角坐标系,根据异面直线所成角的向量求法可求得结果.【详解】以为坐标原点,为轴可建立如图所示空间直角坐标系,设正方体棱长为,则,,,,,,,即异面直线与所成角的余弦值为.故答案为:.16、13【解析】设等差数列公差为d,根据等差数列通项公式、前n项和公式及可求k.【详解】设等差数列公差为d,∵,∴,即,即,∴.故答案为:13.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2),预测加工10个零件大约需要8.05小时【解析】(1)由题意描点作出散点图;(2)根据题中的公式分别求和,即得,令代入求出的值即可.【详解】(1)散点图(2),,,∴,,∴回归直线方程:,令,得,∴预测加工10个零件大约需要8.05小时.【点睛】本题主要考查了散点图,利用最小二乘法求线性回归方程,考查了学生基本作图能力和运算求解能力.18、(1);(2)①证明见解析,;②.【解析】(1)根据椭圆的定义以及角平分线的性质可得,,结合点在椭圆上,以及即可求出的值,进而可得椭圆的方程.(2)①设,,联立直线与椭圆方程,求得,,利用斜率之和等于得出关于的方程,解得即可得所过的定点,②由弦长公式求出,点到直线的距离公式求得高,由面积公式表示三角形的面积,利用基本不等式即可求最值.【详解】(1)如图,由题意可知,由椭圆定义知,则,连接,所以,所以又在椭圆上则,解得:,,所以椭圆的方程为:;(2)①证明:设,,联立,整理可得:,所以,可得,,,设直线,,的斜率为,,,因为直线,,的斜率之和为0,所以,即所以,由,所以,所以直线恒过定点;②由①可得:,原点到直线的距离,所以,因为,当且仅当时,即,即时取等号,所以,即面积的最大值为1【点睛】解决圆锥曲线中的范围或最值问题时,若题目的条件和结论能体现出明确的函数关系,则可先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时常从以下几个方面考虑:19、(1)(或)(2)模型①:1.54;模型②:65.54(3)模型①【解析】(1)利用两边取自然对数,利用表中的数据即可求解;(2)分别计算模型①、②在时残差;(3)根据相关指数的大小判断摸型①、②的残差平方和,再得出那个模型的拟合效果更好.【小问1详解】由,得,令,得,由表Ⅱ数据可得,,,所以,所以回归方程为(或).【小问2详解】由题意可知,模型①在时残差为,模型②在时残差为.【小问3详解】因为,即模型①的相关指数大于模型②的相关指数,由相关指数公式知,模型①的残差平方和小于模型②的残差平方和,因此模型①得到的数据更接近真实数据,所以模型①的拟合效果更好.20、(1)证明见解析,(2)【解析】(1)利用等差数列的定义可证是等差数列,利用等差数列的通项公式可求.(2)利用错位相减法可求.【小问1详解】因为,是以为首项,为公差的等差数列,,.【小问2详解】,,,.21、(1)证明见解析,(2)①;②【解析】(1)由得到,即可得到,从而得证,即可求出的通项公式,从而得到的通项公式;(2)①由(1)可得,再利用错位相减法求和即可;②利用作差法证明的单调性,即可得到,即可得到,再解一元二次不等式即可;【小问1详解】证明:由,,当时,可得,解得,当时,,又,两式相减得,所以,所以,即,则数列是首项为,公比为的等比数列;所以,所以【小问2详解】解:①由(1)可得,所以,所以,所以,所以整理得②由①知,所以,即单调递增,所以,因为不等式对任意的正整数n恒成立,所以,即,解得或,即22、(1);(2)为等边三角形【解析】(1)由(2b﹣c)cosA﹣acosC=0及正弦定理,得sinB(2cosA﹣1)=0,从而得角A;(2)由S△ABC=bcsinA=,可得bc=3,①;再由余弦定理a2=b2+c2﹣2bccosA可得b2+c2=6,②;联立①②可求得b=c=,从而可判断△ABC的形状【详解】(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论