安徽省肥东县圣泉中学2024届高二上数学期末质量跟踪监视试题含解析_第1页
安徽省肥东县圣泉中学2024届高二上数学期末质量跟踪监视试题含解析_第2页
安徽省肥东县圣泉中学2024届高二上数学期末质量跟踪监视试题含解析_第3页
安徽省肥东县圣泉中学2024届高二上数学期末质量跟踪监视试题含解析_第4页
安徽省肥东县圣泉中学2024届高二上数学期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省肥东县圣泉中学2024届高二上数学期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列求导不正确的是()A B.C. D.2.在中,角、、的对边分别是、、,若.则的大小为()A. B.C. D.3.等比数列的公比,中有连续四项在集合中,则等于()A. B.C D.4.若,则的值为()A.或 B.或C.1 D.-15.已知直线的方向向量为,则直线l的倾斜角为()A.30° B.60°C.120° D.150°6.设、是两条不同的直线,、、是三个不同的平面,则下列命题正确的是()A.若,则 B.若,则C.若,则 D.若,则7.已知圆柱的表面积为定值,当圆柱的容积最大时,圆柱的高的值为()A.1 B.C. D.28.为发挥我市“示范性高中”的辐射带动作用,促进教育的均衡发展,共享优质教育资源.现分派我市“示范性高中”的5名教师到,,三所薄弱学校支教,开展送教下乡活动,每所学校至少分派一人,其中教师甲不能到学校,则不同分派方案的种数是()A.150 B.136C.124 D.1009.在等差数列中,为其前项和,若.则()A. B.C. D.10.已知数列满足,且,,则()A. B.C. D.11.若,则与的大小关系是()A. B.C. D.不能确定12.已知空间中四点,,,,则点D到平面ABC的距离为()A. B.C. D.0二、填空题:本题共4小题,每小题5分,共20分。13.已知正方体,点在底面内运动,且始终保持平面,设直线与底面所成的角为,则的最大值为______.14.双曲线的离心率为__________________.15.若函数,则_______16.已知点,平面过,,三点,则点到平面的距离为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在等差数列中,记为数列的前项和,已知:.(1)求数列的通项公式;(2)求使成立的的值.18.(12分)2022北京冬奥会即将开始,北京某大学鼓励学生积极参与志愿者的选拔.某学院有6名学生通过了志愿者选拔,其中4名男生,2名女生(1)若从中挑选2名志愿者,求入选者正好是一名男生和一名女生的概率;(2)若从6名志愿者中任选3人负责滑雪项目服务岗位,那么现将6人分为A、B两组进行滑雪项目相关知识及志愿者服务知识竞赛,共赛10局.A、B两组分数(单位:分)如下:A:125,141,140,137,122,114,119,139,121,142B:126,115,143,126,143,115,139,139,115,139从统计学角度看,应选择哪个组更合适?理由是什么?19.(12分)已知数列通项公式为:,其中.记为数列的前项和(1)求,;(2)数列的通项公式为,求的前项和20.(12分)已知椭圆的上、下顶点分别为A,B,离心率为,椭圆C上的点与其右焦点F的最短距离为.(1)求椭圆C的标准方程;(2)若直线与椭圆C交于P,Q两点,直线PA与QB的斜率分别为,,且,那么直线l是否过定点,若过定点,求出该定点坐标;否则,请说明理由.21.(12分)已知圆C:的半径为1(1)求实数a的值;(2)判断直线l:与圆C是否相交?若不相交,请说明理由;若相交,请求出弦长22.(10分)已知抛物线的焦点为F,点在C上(1)求p的值及F的坐标;(2)过F且斜率为的直线l与C交于A,B两点(A在第一象限),求

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由导数的运算法则、复合函数的求导法则计算后可判断【详解】A:;B:;C:;D:故选:C2、B【解析】利用余弦定理结合角的范围可求得角的值,再利用三角形的内角和定理可求得的值.【详解】因为,则,则,由余弦定理可得,因为,则,故.故选:B.3、C【解析】经分析可得,等比数列各项的绝对值单调递增,将五个数按绝对值的大小排列,计算相邻两项的比值,根据等比数列的定义即可求解.【详解】因为等比数列中有连续四项在集合中,所以中既有正数项也有负数项,所以公比,因为,所以,且负数项为相隔两项,所以等比数列各项的绝对值单调递增,按绝对值排列可得,因,,,,所以是中连续四项,所以,故选:C.4、B【解析】求出函数的导数,由方程求解即可.【详解】,,解得或,故选:B5、B【解析】利用直线的方向向量求出其斜率,进而求出倾斜角作答.【详解】因直线的方向向量为,则直线l的斜率,直线l的倾斜角,于是得,解得,所以直线l的倾斜角为.故选:B6、B【解析】根据线线、线面、面面的位置关系,对选项进行逐一判断即可.【详解】选项A.一条直线垂直于一平面内的,两条相交直线,则改直线与平面垂直则由,不能得出,故选项A不正确.选项B.,则正确,故选项B正确.选项C若,则与可能相交,可能异面,也可能平行,故选项C不正确.选项D.若,则与可能相交,可能平行,故选项D不正确.故选:B7、B【解析】设圆柱的底面半径为,则圆柱底,圆柱侧,则可得,则圆柱的体积为,利用导数求出最大值,确定值.【详解】设圆柱的底面半径为,则圆柱底,圆柱侧,∴,∴,则圆柱的体积,∴,由得,由得,∴当时,取极大值,也是最大值,即故选:B【点睛】本题主要考查了圆柱表面积和体积的计算,考查了导数的实际应用,考查了学生的应用意识.8、D【解析】对甲所在组的人数分类讨论即得解.【详解】当甲一个人去一个学校时,有种;当甲所在的学校有两个老师时,有种;当甲所在的学校有三个老师时,有种;所以共有28+48+24=100种.故选:D【点睛】方法点睛:排列组合常用方法有:简单问题直接法、小数问题列举法、相邻问题捆绑法、不相邻问题插空法、至少问题间接法、复杂问题分类法、等概率问题缩倍法.要根据已知条件灵活选择方法求解.9、C【解析】利用等差数列的性质和求和公式可求得的值.【详解】由等差数列的性质和求和公式可得.故选:C.10、A【解析】由已知两个不等式,利用“两边夹”思想求得,然后利用累加法可求得【详解】∵,∴,∴,又,∴,即,∴故选:A【点睛】本题考查数列的递推式,由递推式的特征,采用累加法求得数列的项.解题关键是利用“两边夹”思想求解11、B【解析】由题知,进而研究的符号即可得答案.详解】解:,所以,即.故选:B12、C【解析】根据题意,求得平面的一个法向量,结合距离公式,即可求解.【详解】由题意,空间中四点,,,,可得,设平面的法向量为,则,令,可得,所以,所以点D到平面ABC的距离为.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】画出立体图形,因为面面,在底面内运动,且始终保持平面,可得点在线段上运动,因为面面,直线与底面所成的角和直线与底面所成的角相等,即可求得答案.【详解】连接和,面面在底面内运动,且始终保持平面可得点在线段上运动,面面,直线与底面所成的角和直线与底面所成的角相等面直线与底面所成的角为:有图像可知:长是定值,当最短时,,即最大,即角最大设正方体的边长为,故故答案为:【点睛】本题考查了求线面角的最大值,解题是掌握线面角的定义和处理动点问题时,应画出图形,寻找几何关系,考查了分析能力和计算能力,属于难题.14、【解析】根据双曲线方程确定a,b,c的值,求出离心率.【详解】由双曲线可得:,故,故答案为:15、1【解析】先对函数求导,然后令可求出的值【详解】因为,所以,则,解得故答案为:16、【解析】先求得平面ABC的一个法向量,然后由求解.【详解】因为,,,,所以,设平面ABC的一个法向量为,则,即,令,则,所以则点到平面的距离为,故答案:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)或.【解析】(1)根据给定条件求出数列的公差及首项即可计算作答.(2)由(1)求出,建立方程求解作答.【小问1详解】设等差数列公差为,因,则,解得,于是得,所以数列的通项公式为:.【小问2详解】由(1)知,,由得:,即,解得或,所以使成立的的值是或.18、(1)(2)答案见详解【解析】(1):把4名男生和2名女生编号后用列举法写出任选2名的所有基本事件,同时可得出,两人是一男一女的基本事件,计数后可计算概率;(2):求出两组数据的均值和方差,比较可得【小问1详解】设4名男生分别用A,B,C,D表示:2名女生分别用1,2表示.基本事件为:,,,,,,,,,,,,共15种,所以所求概率为;【小问2详解】A组数据的平均数,B组数据的平均数,A组数据的方差,B组数据的方差,所以选择A队.理由:A、B两队平均数相同,且,A组成绩波动小19、(1);;(2).【解析】(1)验证可知数列是以为周期的周期数列,则,;(2)由(1)可求得,利用错位相减法可求得结果.【小问1详解】当时,;当时,;当时,;数列是以为周期的周期数列;,;【小问2详解】由(1)得:,,,,两式作差得:.20、(1)(2)恒过点【解析】(1)设为椭圆上的点,根据椭圆的性质得到,再根据的取值范围,得到,再根据离心率求出、,最后根据,求出,即可得解;(2)设、,表示出、,联立直线与椭圆方程,消元列出韦达定理,由,即可得到,再根据,即可得到,从而得到,再将、代入计算可得;【小问1详解】解:设为椭圆上的点,为椭圆的右焦点,所以,因为,所以,又,所以、,因为,所以,所以椭圆方程为;【小问2详解】解:设、,依题意可得、,所以、,联立得,则即,所以、,因为,所以,即,由得,即,所以,即,,整理得,所以,即,即,解得或,当时直线过点,故舍去,所以,则直线恒过点;21、(1);(2)直线l与圆C相交,.【解析】(1)利用配方法进行求解即可;(2)根据点到直线距离公式,结合圆的弦长公式进行求解即可.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论