安徽合肥市2023-2024学年数学高二上期末经典试题含解析_第1页
安徽合肥市2023-2024学年数学高二上期末经典试题含解析_第2页
安徽合肥市2023-2024学年数学高二上期末经典试题含解析_第3页
安徽合肥市2023-2024学年数学高二上期末经典试题含解析_第4页
安徽合肥市2023-2024学年数学高二上期末经典试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽合肥市2023-2024学年数学高二上期末经典试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线的一个焦点到它的一条渐近线的距离为,则()A.5 B.25C. D.2.黄金矩形是宽()与长()的比值为黄金分割比的矩形,如图所示,把黄金矩形分割成一个正方形和一个黄金矩形,再把矩形分割出正方形.在矩形内任取一点,则该点取自正方形内的概率是A. B.C. D.3.下列数列中成等差数列的是()A. B.C. D.4.已知圆,若存在过点的直线与圆C相交于不同两点A,B,且,则实数a的取值范围是()A. B.C. D.5.“”是“直线与直线互相垂直”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.若任取,则x与y差的绝对值不小于1的概率为()A. B.C. D.7.已知数列是等比数列,,数列是等差数列,,则的值是()A. B.C. D.8.若抛物线的准线方程是,则抛物线的标准方程是()A. B.C. D.9.已知等比数列的各项均为正数,且,则()A. B.C. D.10.已知直线:和直线:,抛物线上一动点P到直线和直线的距离之和的最小值是()A. B.C. D.11.一个动圆与定圆相外切,且与直线相切,则动圆圆心的轨迹方程为()A. B.C. D.12.在△ABC中,角A,B,C的对边分别为a,b,c,若,则△ABC()A.一定是锐角三角形 B.一定是直角三角形C.一定是钝角三角形 D.是锐角或直角三角形二、填空题:本题共4小题,每小题5分,共20分。13.在的展开式中,含项的系数为______(结果用数值表示)14.已知两平行直线与间的距离为3,则C的值是________.15.在等比数列中,,则______16.已知数列满足,,则使得成立的n的最小值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列公差不为0,且成等比数列.(1)求数列的通项公式及其前n项和;(2)记,求数列的前n项和.18.(12分)如图,正三棱柱的侧棱长为,底面边长为,点为的中点,点在直线上,且(1)证明:面;(2)求平面和平面夹角的余弦值19.(12分)如图,三棱锥中,两两垂直,,且分别为线段的中点.(1)若点是线段的中点,求证:直线平面;(2)求证:平面平面.20.(12分)已知,以点为圆心圆被轴截得的弦长为.(1)求圆的方程;(2)若过点的直线与圆相切,求直线的方程.21.(12分)已知直线和的交点为(1)若直线经过点且与直线平行,求直线的方程;(2)若直线经过点且与两坐标轴围成的三角形的面积为,求直线的方程22.(10分)如图,在多面体中,和均为等边三角形,D是的中点,.(1)证明:;(2)若,求多面体的体积.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由渐近线方程得到,焦点坐标为,渐近线方程为:,利用点到直线距离公式即得解【详解】由题意,双曲线故焦点坐标为,渐近线方程为:焦点到它的一条渐近线的距离为:解得:故选:B2、C【解析】设矩形的长,宽分别为,所以,把黄金矩形分割成一个正方形和一个黄金矩形,所以,设矩形的面积为,正方形的面积为,设在矩形内任取一点,则该点取自正方形内的概率是,则,故本题选C.【详解】本题考查了几何概型,考查了运算能力.3、C【解析】利用等差数列定义,逐一验证各个选项即可判断作答.【详解】对于A,,A不是等差数列;对于B,,B不是等差数列;对于C,,C是等差数列;对于D,,D不是等差数列.故选:C4、D【解析】根据圆的割线定理,结合圆的性质进行求解即可.【详解】圆的圆心坐标为:,半径,由圆的割线定理可知:,显然有,或,因为,所以,于是有,因为,所以,而,或,所以,故选:D5、A【解析】根据直线垂直求出的范围即可得出.【详解】由直线垂直可得,解得或1,所以“”是“直线与直线互相垂直”的充分不必要条件.故选:A.6、C【解析】根据题意,在平面直角坐标系中分析以及与差的绝对值不小于1所对应的平面区域,求出其面积,由几何概型公式计算可得答案.【详解】根据题意,,其对应的区域为正方形,其面积,若与差的绝对值不小于1,即,即或,对应的区域为图中的阴影部分,其面积为,故与差的绝对值不小于1的概率.故选:C7、B【解析】根据等差数列和等比数列下标和的性质即可求解.【详解】为等比数列,,,,;为等差数列,,,,,∴.故选:B.8、D【解析】根据抛物线的准线方程,可直接得出抛物线的焦点,进而利用待定系数法求得抛物线的标准方程【详解】准线方程为,则说明抛物线的焦点在轴的正半轴则其标准方程可设为:则准线方程为:解得:则抛物线的标准方程为:故选:D9、B【解析】利用对数的运算性质,结合等比数列的性质可求得结果.【详解】是各项均为正数的等比数列,,,,.故选:B10、A【解析】根据已知条件,结合抛物线的定义,可得点P到直线和直线的距离之和,当B,P,F三点共线时,最小,再结合点到直线的距离公式,即可求解【详解】∵抛物线,∴抛物线的准线为,焦点为,∴点P到准线的距离PA等于点P到焦点F的距离PF,即,∴点P到直线和直线的距离之和,∴当B,P,F三点共线时,最小,∵,∴,∴点P到直线和直线的距离之和的最小值为故选:A11、D【解析】根据点到直线的距离与点到点之间距离的关系化简即可.【详解】定圆的圆心,半径为2,设动圆圆心P点坐标为(x,y),动圆的半径为r,d为动圆圆心到直线的距离,即r,则根据两圆相外切及直线与圆相切的性质可得,所以,化简得:∴动圆圆心轨迹方程为故选:D12、C【解析】由余弦定理确定角的范围,从而判断出三角形形状【详解】由得-cosC>0,所以cosC<0,从而C为钝角,因此△ABC一定是钝角三角形.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、12【解析】通过二次展开式就可以得到.【详解】的展开式中含含项的系数为故答案为:1214、【解析】根据两条平行直线之间的距离公式即可得解.【详解】两平行直线与间的距离为3,所以,所以故答案为:15、【解析】利用等比数列性质和通项公式可求得,根据可求得结果.【详解】,又,,.故答案为:.16、11【解析】由题设可得,结合等比数列的定义知从第二项开始是公比为2的等比数列,进而写出的通项公式,即可求使成立的最小值n.【详解】因为,所以,两式相除得,整理得.因为,故从第二项开始是等比数列,且公比为2,因为,则,所以,则,由得:,故故答案为:11.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】(1)根据分式的合分比性质以及等差数列的性质即可求出;(2)根据裂项相消法即可求出【小问1详解】由题意:,即,又∵,∴,∴,∴,.【小问2详解】因为,∴.18、(1)证明见解析(2)【解析】(1)证明平面,可得出,再由结合线面垂直的判定定理可证得结论成立;(2)以点为坐标原点,、、的方向分别为、、轴的正方向建立空间直角坐标系,利用空间向量法可求得结果.【小问1详解】证明:正中,点为的中点,,因为平面,平面,则,,则平面,平面,则,又,且,平面.【小问2详解】解:因为,以点为坐标原点,、、的方向分别为、、轴的正方向建立如下图所示的空间直角坐标系,则、、、,设平面的法向量为,,,则,取,可得,平面,平面,则,又因为,,故平面,所以,平面的一个法向量为,则.因此,平面和平面夹角的余弦值为.19、(1)证明见解析(2)证明见解析【解析】(1)由题意可得,从而可证.(2)由题意可得平面,从而可得,由根据条件可得,从而可得平面,从而可得证.【小问1详解】由分别为线段的中点.由中位线定理知,又平面,且平面,所以直线平面【小问2详解】两两垂直,即,且所以平面,又平面,所以由,且分别为线段的中点,所以,因此根据线面垂直判定定理得平面,且平面所以平面平面.20、(1)(2)或【解析】(1)根据垂径定理,可直接计算出圆的半径;(2)根据直线的斜率是否存在分类讨论,斜率不存在时,可得到直线方程为的直线满足题意,斜率存在时,利用直线与圆相切,即到直线的距离等于半径,然后解出关于斜率的方程即可.【小问1详解】不妨设圆的半径为,根据垂径定理,可得:解得:则圆的方程为:【小问2详解】当直线的斜率不存在时,则有:故此时直线与圆相切,满足题意当直线的斜率存在时,不妨设直线的斜率为,点的直线的距离为直线的方程为:则有:解得:,此时直线的方程为:综上可得,直线的方程为:或21、(1)(2)或【解析】(1)由已知可得交点坐标,再根据直线间的位置关系可得直线方程;(2)设直线方程,根据直线与两坐标轴围成的三角形的面积,列出方程组,解方程.【小问1详解】解:联立的方程,解得,即设直线的方程为:,将带入可得所以的方程为:;【小问2详解】解:法①:易知直线在两坐标轴上的截距均不为,设直线方程为:,则直线与两坐标轴交点为,由题意得,解得:或所以直线的方程为:或,即:或.法②:设直线的斜率为,则的方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论