版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届中山市重点中学数学高二上期末考试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数在处取得极值,则()A. B.C. D.2.设P为椭圆C:上一点,,分别为左、右焦点,且,则()A. B.C. D.3.已知向量,且,则()A. B.C. D.4.已知斜三棱柱所有棱长均为2,,点、满足,,则()A. B.C.2 D.5.已知、分别为双曲线的左、右焦点,且,点P为双曲线右支一点,为的内心,若成立,给出下列结论:①点的横坐标为定值a;②离心率;③;④当轴时,上述结论正确的是()A.①② B.②③C.①②③ D.②③④6.已知的周长等于10,,通过建立适当的平面直角坐标系,顶点的轨迹方程可以是()A. B.C. D.7.若直线的斜率,则直线的倾斜角的取值范围是()A. B.C. D.8.若,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.过点且与直线平行的直线方程是()A. B.C. D.10.已知函数,则()A. B.0C. D.111.已知椭圆和双曲线有共同的焦点,分别是它们的在第一象限和第三象限的交点,且,记椭圆和双曲线的离心率分别为,则等于()A.4 B.2C.2 D.312.已知,,且,则向量与的夹角为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.总书记在2021年2月25日召开的全国脱贫攻坚总结表彰大会上发表重要讲话,庄严宣告,在迎来中国共产党成立一百周年的重要时刻,我国脱贫攻坚取得了全面胜利.在脱贫攻坚过程中,为了解某地农村经济情况,工作人员对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下列结论中所存确结论的序号是____________①该地农户家庭年收入低于4.5万元的农户比率估计为6%;②该地农户家庭年收入不低于10.5万元的农户比率估计为10%;③估计该地农户家庭年收入的平均值不超过6.5万元;④估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间14.如果方程表示焦点在轴上的椭圆,那么实数的取值范围是______.15.已知点P在圆上,已知,,则的最小值为___________.16.如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x=_____________,y=_____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图所示,在正方体中,点,,分别是,,的中点(1)证明:;(2)求直线与平面所成角的大小18.(12分)为增强市民的环境保护意识,某市面向全市征召若干名宣传志愿者,成立环境保护宣传小组,现把该小组的成员按年龄分成、、、、这组,得到的频率分布直方图如图所示,已知年龄在内的人数为.(1)若用分层抽样的方法从年龄在、、内的志愿者中抽取名参加某社区的宣传活动,再从这名志愿者中随机抽取名志愿者做环境保护知识宣讲,求这名环境保护知识宣讲志愿者中至少有名年龄在内的概率;(2)在(1)的条件下,记抽取的名志愿者分别为甲、乙,该社区为了感谢甲、乙作为环境保护知识宣讲的志愿者,给甲、乙各随机派发价值元、元、元的纪念品一件,求甲的纪念品不比乙的纪念品价值高的概率.19.(12分)已知函数(其中a常数)(1)求的单调递增区间;(2)若,时,的最小值为4,求a的值20.(12分)已知抛物线C的方程为:,点(1)若直线与抛物线C相交于A、B两点,且P为线段AB的中点,求直线的方程.(2)若直线过交抛物线C于M,N两点,F为抛物线C的焦点,求的最小值21.(12分)已知函数在处有极值,且其图象经过点.(1)求的解析式;(2)求在的最值.22.(10分)已知椭圆的右焦点为,短轴长为4,设,的左右有两个焦点求椭圆C的方程;若P是该椭圆上的一个动点,求的取值范围;是否存在过点的直线l与椭圆交于不同的两点C,D,使得?若存在,求出直线l的方程;若不存在,请说明两点
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据极值点处导函数为零可求解.【详解】因为,则,由题意可知.经检验满足题意故选:B2、B【解析】根据椭圆的定义写出,再根据条件即可解得答案.【详解】根据P为椭圆C:上一点,则有,又,所以,故选:B.3、A【解析】利用空间向量共线的坐标表示即可求解.【详解】由题意可得,解得,所以.故选:A4、D【解析】以向量为基底向量,则,根据条件由向量的数量积的运算性质,两边平方可得答案.【详解】以向量为基底向量,所以所以故选:D5、C【解析】利用双曲线的定义、几何性质以及题意对选项逐个分析判断即可【详解】对于①,设内切圆与的切点分别为,则由切线长定理可得,因为,,所以,所以点的坐标为,所以点的横坐标为定值a,所以①正确,对于②,因为,所以,化简得,即,解得,因为,所以,所以②正确,对于③,设的内切圆半径为,由双曲线的定义可得,,因为,,所以,所以,所以③正确,对于④,当轴时,可得,此时,所以,所以④错误,故选:C6、A【解析】根据椭圆的定义进行求解即可.【详解】因为的周长等于10,,所以,因此点的轨迹是以为焦点的椭圆,且不在直线上,因此有,所以顶点的轨迹方程可以是,故选:A7、B【解析】根据斜率的取值范围,结合来求得倾斜角的取值范围.【详解】设倾斜角为,因为,且,所以.故选:B8、C【解析】利用函数在上单调递减即可求解.【详解】解:因为函数在上单调递减,所以若,,则;反之若,,则.所以若,则“”是“”的充要条件,故选:C.9、A【解析】由题意设直线方程为,根据点在直线上求参数即可得方程.【详解】由题设,令直线方程为,所以,可得.所以直线方程为.故选:A.10、B【解析】先求导,再代入求值.详解】,所以.故选:B11、A【解析】设椭圆的长半轴长为,双曲线的实半轴长为,由定义可得,,在中利用余弦定理可得,即可求出结果.【详解】设椭圆的长半轴长为,双曲线的实半轴长为,不妨设在第一象限,根据椭圆和双曲线定义,得,,,由可得,又,在中,,即,化简得,两边同除以,得.故选:A.【点睛】关键点睛:本题考查共焦点的椭圆与双曲线的离心率问题,解题的关键是利用定义以及焦点三角形的关系列出齐次方程式进行求解.12、B【解析】先求出向量与的夹角的余弦值,即可求出与的夹角.【详解】,所以,∴,∴,∴,又∵,∴与的夹角为.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、①②④【解析】利用频率分布直方图中频率的求解方法,通过求解频率即可判断选项①,②,④,利用平均值的计算方法,即可判断选项③【详解】解:对于①,该地农户家庭年收入低于4.5万元的农户比率为,故选项①正确;对于②,该地农户家庭年收入不低于10.5万元的农户比率为,故选项②正确;对于③,估计该地农户家庭年收入的平均值为万元,故选项③错误;对于④,家庭年收入介于4.5万元至8.5万元之间的频率为,故估计该地有一半以上的农户,其家庭年收入介于45万元至8.5万元之间,故选项④正确故答案为:①②④14、【解析】化简椭圆的方程为标准形式,列出不等式,即可求解.【详解】由题意,方程可化为,因为方程表示焦点在轴上的椭圆,可得,解得,实数的取值范围是.故答案为:.15、【解析】推导出极化恒等式,即,结合最小值为,求出最小值.【详解】由题意,取线段AB中点,则,,两式分别平方得:①,②,①-②得:,因为圆心到距离为,所以最小值为,又,故最小值为:.故答案为:16、①.3②.5【解析】根据茎叶图进行数据分析,列方程求出x、y.【详解】由题意,甲组数据为56,62,65,70+x,74;乙组数据为59,61,67,60+y,78.要使两组数据中位数相等,有65=60+y,所以y=5.又平均数相同,则,解得x=3.故答案为:3;5.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)连接,可得,从而可证四边形是平行四边形,从而证明结论.(2)以为坐标原点,分别以,,所在直线为,,轴,建立空间直角坐标系,利用向量法求解线面角.【小问1详解】如图,连接在正方体中,且因为,分别是,的中点,所以且又因为是的中点,所以,且,所以四边形是平行四边形,所以【小问2详解】以为坐标原点,分别以,,所在直线为,,轴,建立如图所示的空间直角坐标系设,则,,,,,,设为平面的法向量因为,,,所以令,得设直线与平面所成角为,则因为,所以直线与平面所成角的大小为18、(1);(2).【解析】(1)将名志愿者进行编号,列举出所有的基本事件,并确定所求事件所包含的基本事件数,利用古典概型的概率公式可求得所求事件的概率;(2)列举出甲、乙获得纪念品价值的所有情况,并确定所求事件所包含的情况,利用古典概型的概率公式可求得所求事件的概率.【小问1详解】解:因为志愿者年龄在、、内的频率分别为、、,所以用分层抽样的方法抽取的名志愿者年龄在、、内的人数分别为、、.记年龄在内的名志愿者分别记为、、,年龄在的名志愿者分别记为、,年龄在内的名志愿者记为,则从中抽取名志愿者的情况有、、、、、、、、、、、、、、,共种可能;而至少有名志愿者的年龄在内的情况有、、、、、、、、,共种可能.所以至少有名志愿者的年龄在内的概率为.【小问2详解】解:甲、乙获得纪念品价值的情况有、、、、、、、、,共种可能;而甲的纪念品不比乙的纪念品价值高的情况有、、、、、,共种可能.故甲的纪念品不比乙的纪念品价值高的概率为.19、(1);(2).【解析】(1)利用三角恒等变换思想化简函数解析式为,然后解不等式,可得答案;(2)由计算出的取值范围,利用正弦函数的基本性质可求得函数的最小值,进而可求得实数的值.【详解】(1),令,解得.所以,函数的单调递增区间为;(2)当时,,所以,所以,解得.20、(1)(2)16【解析】(1)设,代入抛物线方程由点差法可得答案;(2)设直线为:,,与抛物线方程联立,利用韦达定理和基本不等式可得答案.【小问1详解】设则,由两式相减可得:,,即直线的方程为.【小问2详解】设直线为:,由可得,,,,又因为点坐标为,所以,从而,,所以当且仅当时,有最小值1621、(1)(2),【解析】(1)由与解方程组即可得解;(2)求导后得到函数的单调区间与极值后,比较端点值即可得解.【详解】(1)求导得,处有极值,即,又图象过点,代入可得..(2)由(1)知,令得又,.列表如下:0230+4↘极小值↗1在时,,.【点睛】本题考查了导数的简单应用,属于基础题.22、(1)(2)(3)满足条件的直线不存在,详见解析【解析】根据条件直接求出,进而求出椭圆标准方程;设,表示出,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届江西省丰城九中物理高一第一学期期中达标检测试题含解析
- 2025届湖北省鄂东南联盟物理高一第一学期期末统考试题含解析
- 2025届广西钦州市第四中学物理高一第一学期期中统考模拟试题含解析
- 2025届山东省山东师大附中物理高二第一学期期末学业水平测试试题含解析
- 2025届福建省漳州市重点初中物理高一上期末联考模拟试题含解析
- 2025届湖南省浏阳市三校物理高三第一学期期末质量跟踪监视模拟试题含解析
- 安徽省六安市舒城中学2025届物理高三上期末质量跟踪监视试题含解析
- 2025届江西省安远县一中物理高三第一学期期末质量检测模拟试题含解析
- 河北省唐山市滦南县2025届物理高三上期末联考试题含解析
- 饲料工程基础知识单选题100道及答案解析
- 小学六年级英语上册《Unit 1 How can I get there》教案
- 完整版方法验证报告模板最终
- 电力管道资料表格(共30页)
- 大班科学活动教案《豆豆家族》含PPT课件
- 【精品试卷】部编人教版(统编)一年级上册语文第一单元测试卷含答案
- 金属有机化学ppt课件
- 铜包铝线标准
- 数学说题稿(共4页)
- 门球协会章程
- 应急管理试题库
- 《各类事故应急处置卡》
评论
0/150
提交评论