版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届四川省成都市龙泉驿区高二上数学期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图为学生做手工时画的椭圆(其中网格是由边长为1的正方形组成),它们的离心率分别为,则()A. B.C. D.2.已知椭圆=1的离心率为,则k的值为()A.4 B.C.4或 D.4或3.如图,样本和分别取自两个不同的总体,它们的平均数分别为和,标准差分别为和,则()AB.C.D.4.若,(),则,的大小关系是A. B.C. D.,的大小由的取值确定5.若椭圆与直线交于两点,过原点与线段AB中点的直线的斜率为,则A. B.C. D.26.函数区间上有()A.极大值为27,极小值为-5 B.无极大值,极小值为-5C.极大值为27,无极小值 D.无极大值,无极小值7.已知函数,则等于()A.0 B.2C. D.8.若、、为空间三个单位向量,,且与、所成的角均为,则()A.5 B.C. D.9.已知等差数列{an}的前n项和为Sn,且S7=28,则a4=()A.4 B.7C.8 D.1410.已知,,且,则()A. B.C. D.11.已知圆的圆心到直线的距离为,则圆与圆的位置关系是()A.相交 B.内切C.外切 D.外离12.已知a,b是互不重合直线,,是互不重合的平面,下列命题正确的是()A.若,,则B.若,,,则C.若,,则D.若,,,则二、填空题:本题共4小题,每小题5分,共20分。13.若直线:x-2y+1=0与直线:2x+my-1=0相互垂直,则实数m的值为________.14.函数在上的最大值为______________15.若函数,则_______16.已知为曲线:上一点,,,则的最小值为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,,分别是锐角内角,,对边,,.(1)求的值;(2)若的面积为,求的值.18.(12分)已知斜率为的直线与椭圆:交于,两点(1)若线段的中点为,求的值;(2)若,求证:原点到直线的距离为定值19.(12分)已知圆心在直线上,且过点、(1)求的标准方程;(2)已知过点的直线被所截得的弦长为4,求直线的方程20.(12分)已知是等差数列,是各项都为正数的等比数列,,再从①;②;③这三个条件中选择___________,___________两个作为已知.(1)求数列的通项公式;(2)求数列的前项和.21.(12分)已知数列的前项和为,并且满足(1)求数列的通项公式;(2)若,数列的前项和为,求证:22.(10分)已知数列的首项为,且满足.(1)求证:数列为等比数列;(2)设,记数列的前项和为,求,并证明:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据图知分别得到椭圆、、的半长轴和半短轴,再由求解比较即可.【详解】由图知椭圆的半长轴和半短轴分别为:,椭圆的半长轴和半短轴分别为:,椭圆的半长轴和半短轴分别为:,所以,,,所以,故选:D2、C【解析】根据焦点所在坐标轴进行分类讨论,由此求得的值.【详解】当焦点在轴上时,,且.当焦点在轴上时,且.故选:C3、B【解析】直接根据图表得到答案.【详解】根据图表:样本数据均小于等于10,样本数据均大于等于10,故;样本数据波动大于样本数据,故.故选:B.4、A【解析】∵且,∴,又,∴,故选A.5、D【解析】细查题意,把代入椭圆方程,得,整理得出,设出点的坐标,由根与系数的关系可以推出线段的中点坐标,再由过原点与线段的中点的直线的斜率为,进而可推导出的值.【详解】联立椭圆方程与直线方程,可得,整理得,设,则,从而线段的中点的横坐标为,纵坐标,因为过原点与线段中点的直线的斜率为,所以,所以,故选D.【点睛】该题是一道关于直线与椭圆的综合性题目,涉及到的知识点有直线与椭圆相交时对应的解题策略,中点坐标公式,斜率坐标公式,属于简单题目.6、B【解析】求出得出的单调区间,从而可得答案.【详解】当时,,单调递减.当时,,单调递增.所以当时,取得极小值,极小值为,无极大值.故选:B7、D【解析】先通过诱导公式将函数化简,进而求出导函数,然后算出答案.【详解】由题意,,故选:D.8、C【解析】先求的平方后再求解即可.【详解】,故,故选:C9、A【解析】由等差数列的性质可知,再代入等差数列的前项和公式求解.【详解】数列{an}是等差数列,,那么,所以.故选:A.【点睛】本题考查等差数列的性质和前项和,属于基础题型.10、D【解析】利用空间向量共线的坐标表示可求得、的值,即可得解.【详解】因为,则,所以,,,因此,.故选:D11、B【解析】求出两圆的圆心与半径,根据两圆的位置关系的判定即可求解.【详解】已知圆的圆心到直线的距离,即,解得或,因为,所以,圆的圆心的坐标为,半径,将圆化为标准方程为,其圆心的坐标为,半径,圆心距,两圆内切,故选:B12、B【解析】根据线线,线面,面面位置关系的判定方法即可逐项判断.【详解】A:若,,则或a,故A错误;B:若,,则a⊥β,又,则a⊥b,故B正确;C:若,,则或α与β相交,故C错误;D:若,,,则不能判断α与β是否垂直,故D错误.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】由两条直线垂直可知,进而解得答案即可.【详解】因为两条直线垂直,所以.故答案为:1.14、【解析】对原函数求导得,令,解得或,且所以原函数在上的最大值为考点:1.函数求导;2.利用导函数求最值15、1【解析】先对函数求导,然后令可求出的值【详解】因为,所以,则,解得故答案为:16、【解析】曲线是抛物线的右半部分,是抛物线的焦点,作出抛物线的准线,把转化为到准线的距离,则到准线的距离为所求距离和的最小值【详解】易知曲线是抛物线的右半部分,如图,因为抛物线的准线方程为,是抛物线的焦点,所以等于到直线的距离.过作该直线的垂线,垂足为,则的最小值为故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)4.【解析】(1)由正弦定理即可得答案.(2)根据题意得到,再由关于角的余弦定理和整理化简得,再由的面积,即可求出的值.【小问1详解】由及正弦定理可得.小问2详解】由锐角中得,根据余弦定理可得,代入得,整理得,即,解得,,解得.18、(1);(2)证明见解析.【解析】(1)设出两点的坐标,利用点差法即可求出的值;(2)设出直线的方程,与椭圆方程联立,写韦达;根据,求出,从而可证明原点到直线的距离为定值【小问1详解】设,则,,两式相减,得,即,所以,即,又因为线段的中点为,所以,即;【小问2详解】设斜率为的直线为,,由,得,所以,,因为,所以,即,所以,所以,即,所以,原点到直线的距离为.所以原点到直线的距离为定值.19、(1);(2)或.【解析】(1)由、两点坐标求出直线的垂直平分线的方程与直线上联立可得圆心坐标,由两点间距离公式求出半径,即可得圆的标准方程;(2)设直线的方程,求出圆心到直线的距离,再由垂径定理结合勾股定理列方程求出的值,即可得直线的方程【详解】由点、可得中点坐标为,,所以直线的垂直平分线的斜率为,可得直线的垂直平分线的方程为:即,由可得:,所以圆心为,,所以的标准方程为,(2)设直线的方程为即,圆心到直线的距离,则可得,即,解得:或,所以直线的方程为或,即或20、答案见解析【解析】(1)根据题设条件可得关于基本量的方程组,求解后可得的通项公式.(2)利用公式法可求数列的前项和.【详解】解:选择条件①和条件②(1)设等差数列的公差为,∴解得:,.∴,.(2)设等比数列的公比为,,∴解得,.设数列的前项和为,∴.选择条件①和条件③:(1)设等差数列的公差为,∴解得:,.∴.(2),设等比数列的公比为,.∴,解得,.设数列的前项和为,∴.选择条件②和条件③:(1)设等比数列的公比为,,∴,解得,,.设等差数列的公差为,∴,又,故.∴.(2)设数列的前项和为,由(1)可知.【点睛】方法点睛:等差数列或等比数列的处理有两类基本方法:(1)利用基本量即把数学问题转化为关于基本量的方程或方程组,再运用基本量解决与数列相关的问题;(2)利用数列的性质求解即通过观察下标的特征和数列和式的特征选择合适的数列性质处理数学问题21、(1);(2)证明见解析.【解析】(1)利用和项可求得的通项公式,注意别漏了说明;(2)先用错位相减法求出数列的前项和,从而可知【详解】(1),①当时,,②由①—②可得:,且数列是首项为1,公差为2的等差数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度绿色交通合伙清算合作协议3篇
- 二零二五年度全款购房合同:房地产项目投资并购及整合协议3篇
- 2025年度农业现代化贷款担保协议3篇
- 2025年度全新官方版二零二五年度离婚协议书与子女监护权协议3篇
- 二零二五年度知识产权侵权律师费协议3篇
- 二零二五年度农村土地占用与农村文化传承合同协议
- 2025年度航空航天公司干股分红与飞行器研发合作协议3篇
- 二零二五年度卫浴安装与智能家居系统集成与优化服务协议3篇
- 二零二五年度太阳能电池板加工服务合同3篇
- 二零二五年度物联网解决方案公司转让合同3篇
- 房屋市政工程生产安全重大事故隐患判定标准(2024版)宣传海报
- 2024-2025学年统编版七年级语文上学期期末真题复习 专题01 古诗文名篇名句默写
- 2024-2030年中国企业大学建设行业转型升级模式及投资规划分析报告
- 医院培训课件:《病历书写基本规范(医疗核心制度)》
- 2024年“中银杯”安徽省职业院校技能大赛(高职组)花艺赛项竞赛规程
- 部队年度安全规划方案
- 2024-2025学年七年级上学期历史观点及论述题总结(统编版)
- 2024年市特殊教育学校工作总结范文(2篇)
- 【MOOC】创新思维与创业实验-东南大学 中国大学慕课MOOC答案
- 青岛大学《英语综合》2023-2024学年第一学期期末试卷
- EPC工程总承包实施方案
评论
0/150
提交评论