版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省平和一中、南靖一中等五校2023年数学高二上期末学业质量监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线的斜率为1,直线的倾斜角比直线的倾斜角小15°,则直线的斜率为()A.-1 B.C. D.12.已知等差数列,,,则数列的前项和为()A. B.C. D.3.平行六面体的各棱长均相等,,,则异面直线与所成角的余弦值为()A. B.C. D.4.已知点到直线:的距离为1,则等于()A. B.C. D.5.若,则下列结论不正确的是()A. B.C. D.6.与向量平行,且经过点的直线方程为()A. B.C. D.7.圆与圆公切线的条数为()A.1 B.2C.3 D.48.“”是“直线与互相垂直”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.“冰雹猜想”数列满足:,,若,则()A.4 B.3C.2 D.110.已知直线l1:ax+2y=0与直线l2:2x+(2a+2)y+1=0垂直,则实数a的值为()A.﹣2 B.C.1 D.1或﹣211.已知椭圆与双曲线有相同的焦点,则的值为A. B.C. D.12.双曲线型自然通风塔外形是双曲线的一部分绕其虚轴旋转所成的曲面,如图所示,它的最小半径为米,上口半径为米,下口半径为米,高为24米,则该双曲线的离心率为()A.2 B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若,若,则______14.若,且,则的最小值是____________.15.设是定义在上的可导函数,且满足,则不等式解集为_______16.圆锥的高为1,底面半径为,则过圆锥顶点的截面面积的最大值为____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在直三棱柱中,,E、F分别是、的中点(1)求证:平面;(2)求证:平面18.(12分)芯片作为在集成电路上的载体,广泛应用在手机、军工、航天等多个领域,是能够影响一个国家现代工业的重要因素.根据市场调研与统计,某公司七年时间里在芯片技术上的研发投入x(亿元)与收益y(亿元)的数据统计如下:(1)根据折线图的数据,求y关于x的线性回归方程(系数精确到整数部分);(2)为鼓励科技创新,当研发技术投入不少于16亿元时,国家给予公司补贴5亿元,预测当芯片的研发投入为17亿元时公司的实际收益附:其回归方程的斜率和截距的最小二乘法估计分别为,.参考数据,19.(12分)已知平面内两点.(1)求过点且与直线平行的直线的方程;(2)求线段的垂直平分线方程.20.(12分)根据下列条件求圆的方程:(1)圆心在点O(0,0),半径r=3(2)圆心在点O(0,0),且经过点M(3,4)21.(12分)已知圆(1)求圆心的坐标和圆的面积;(2)若直线与圆相交于两点,求弦长22.(10分)如图,△ABC中,,,在三角形内挖去一个半圆(圆心O在边BC上,半圆与AC、AB分别相切于点C,M,与BC交于点N),将△ABC绕直线BC旋转一周得到一个旋转体(1)求该几何体中间一个空心球表面积的大小;(2)求图中阴影部分绕直线BC旋转一周所得旋转体的体积
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据直线的斜率求出其倾斜角可求得答案.【详解】设直线的倾斜角为,所以,因为,所以,因为直线的倾斜角比直线的倾斜角小15°,所以直线的倾斜角为,则直线的斜率为.故选:C2、A【解析】求出通项,利用裂项相消法求数列的前n项和.【详解】因为等差数列,,,所以,所以,所以数列的前项和为故B,C,D错误.故选:A.3、B【解析】利用基底向量表示出向量,,即可根据向量夹角公式求出【详解】如图所示:不妨设棱长为1,,,所以==,,,即,故异面直线与所成角的余弦值为故选:B注意事项:1.将答案写在答题卡上2.本卷共10小题,共80分.4、D【解析】利用点到直线的距离公式,即可求得参数的值.【详解】因为点到直线:的距离为1,故可得,整理得,解得.故选:.5、B【解析】由得出,再利用不等式的基本性质和基本不等式来判断各选项中不等式的正误.【详解】,,,,A选项正确;,B选项错误;由基本不等式可得,当且仅当时等号成立,,则等号不成立,所以,C选项正确;,,D选项正确.故选:B.【点睛】本题考查不等式正误的判断,涉及不等式的基本性质和基本不等式,考查推理能力,属于基础题.6、A【解析】利用点斜式求得直线方程.【详解】依题意可知,所求直线的斜率为,所以所求直线方程为,即.故选:A7、D【解析】分别求出圆和圆的圆心和半径,判断出两圆的位置关系可得到公切线的条数.【详解】根据题意,圆即,其圆心为,半径;圆即,其圆心为,半径;两圆的圆心距,所以两圆相离,其公切线条数有4条;故选:D.8、A【解析】根据两直线垂直的性质求出,再结合充分条件和必要条件的定义即可得出答案.【详解】解:因为直线与互相垂直,所以,解得或,所以“”是“直线与互相垂直”的充分不必要条件.故选:A.9、A【解析】根据题意分别假设为奇数、偶数的情况,求出对应的即可.【详解】由题意知,因为,若为奇数时,,与为奇数矛盾,不符合题意;若为偶数时,,可得,符合题意.不符合故选:A10、B【解析】由题意,利用两直线垂直的性质,两直线垂直时,一次项对应系数之积的和等于0,计算求得a的值【详解】∵直线l1:ax+2y=0与直线l2:2x+(2a+2)y+1=0垂直,∴a×2+2×(2a+2)=0,求得a=﹣,故选:B11、C【解析】根据题意可知,结合的条件,可知,故选C考点:椭圆和双曲线性质12、A【解析】以的中点О为坐标原点,建立平面直角坐标系,设双曲线的方程为,设,,代入双曲线的方程,求得,得到,进而求得双曲线的离心率.【详解】以的中点О为坐标原点,建立如图所示的平面直角坐标系,则,设双曲线的方程为,则,可设,,又由,在双曲线上,所以,解得,,即,所以该双曲线的离心率为.故选:A.第II卷二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】首先利用二项展开式的通项公式,求,再利用赋值法求系数的和以及【详解】展开式的通项为,令,则,即,故,令,得.又,所以故故答案为:14、【解析】应用基本不等式“1”的代换求a+4b的最小值即可.【详解】由,有,则,当且仅当,且,即时等号成立,∴最小值为.故答案为:15、【解析】构造函数,结合题意求得,由此判断出在上递增,由此求解出不等式的解集.【详解】令,,故函数在上单调递增,不等式可化为,则,解得:【点睛】本小题主要考查构造函数法解不等式,考查化归与转化的数学思想方法,属于基础题.16、2【解析】求出圆锥轴截面顶角大小,判断并求出所求面积最大值【详解】如图,是圆锥轴截面,是一条母线,设轴截面顶角为,因为圆锥的高为1,底面半径为,所以,,所以,,设圆锥母线长为,则,截面的面积为,因为,所以时,故答案为:2三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)证明见解析.【解析】(1)连接,交于点M,连接ME,则M为中点.根据三角形的中位线定理和平行四边形的判断和性质可证得,再由线面平行的判定定理可得证;(2)由线面垂直的性质和判定可得证.【详解】证明:(1)连接,交于点M,连接ME,则M为中点因为E、F分别是与的中点,所以,则,从而为平行四边形,则又因为平面平面,所以平面(2)由平面,因为平面,所以而,M为的中点,所以因为,所以平面,由(1)有,故平面18、(1)(2)85亿元【解析】(1)利用公式和数据计算即可(2)代入回归直线计算即可【小问1详解】由折线图中数据知,,,因为,所以所以y关于x的线性回归方程为【小问2详解】当时,亿元,此时公司的实际收益的预测值为亿元19、(1)(2)【解析】(1)求出直线的斜率,利用点斜式方程求解即可;(2)求出线段的中点坐标,求出斜率然后求解垂直平分线方程.试题解析:(1)∵点∴∴由点斜式得直线的方程(2)∵点∴线段的中点坐标为∵∴线段的垂直平分线的斜率为∴由点斜式得线段的垂直平分线的方程为20、(1)x2+y2=9(2)x2+y2=25【解析】(1)直接根据圆心坐标和半径,即可得到答案;(2)利用两点间的距离公式,求出圆的半径,即可得到答案;【小问1详解】根据题意,圆心在点O(0,0),半径r=3,则要求圆的方程为x2+y2=9;【小问2详解】圆心在点O(0,0),且经过点M(3,4),要求圆的半径r==5,则要求圆的方程为x2+y2=25;21、(1)圆心,面积为;(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 福建省莆田市2023-2024学年高二下学期7月期末考试历史
- 湖北科技出版社三上生命安全教育教案
- 学校安全教育教案
- JGJ18-2012钢筋焊接及验收规程
- 专利技术转让私人居间合同
- KTV木工修缮合同范本
- 4S店涂装油漆施工合同
- O2O建材家居平台建设运营商业计划书
- 2024年软件公司竞业禁止
- 2024年重庆货运资格证模拟考试题
- 校园反诈骗课件
- 2024-2030年中国工业脱水机行业发展状况及投资方向分析报告
- 网络传播法导论(第2版)课件 第五章 侵害名誉权
- 环评手续转让协议(2篇)
- 上海市高行中学2024-2025学年高二上学期9月质量检测数学试卷
- 医院污水处理运维服务投标方案(技术方案)
- 2024年高考最后一套压轴卷-文综试题(全国甲卷)含解析
- 苏教版数学长方体与正方体表面积解析
- 2024年国家开放大学形考作业答案
- 2024年湖南长沙环境保护职业技术学院招聘专任教师历年(高频重点复习提升训练)共500题附带答案详解
- 中考数学专题训练一元二次方程(50道计算题)(无答案)
评论
0/150
提交评论