版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
东北师大附中净月实验学校2023年高二数学第一学期期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若圆与圆相切,则的值为()A. B.C.或 D.或2.等差数列中,为其前项和,,则的值为()A.13 B.16C.104 D.2083.已知分别是椭圆的左,右焦点,点M是椭圆C上的一点,且的面积为1,则椭圆C的短轴长为()A.1 B.2C. D.44.小王与小张二人参加某射击比赛预赛的五次测试成绩如下表所示,设小王与小张成绩的样本平均数分别为和,方差分别为和,则()第一次第二次第三次第四次第五次小王得分(环)910579小张得分(环)67557A. B.C. D.5.在圆上任取一点P,过点P作x轴的垂线段PD,D为垂足,当点P在圆上运动时,线段PD的中点M的轨迹记为C,则曲线C的离心率为()A. B.C. D.6.设双曲线的左、右顶点分别为、,点在双曲线上第一象限内的点,若的三个内角分别为、、且,则双曲线的渐近线方程为()A. B.C. D.7.在一个正方体中,为正方形四边上的动点,为底面正方形的中心,分别为中点,点为平面内一点,线段与互相平分,则满足的实数的值有A.0个 B.1个C.2个 D.3个8.在等比数列中,,公比,则()A. B.6C. D.29.已知在平面直角坐标系中,圆的方程为,直线过点且与直线垂直.若直线与圆交于两点,则的面积为A.1 B.C.2 D.10.在等差数列中,,则等于A.2 B.18C.4 D.911.直线的倾斜角为()A.1 B.-1C. D.12.已知双曲线=1的一条渐近线方程为x-4y=0,其虚轴长为()A.16 B.8C.2 D.1二、填空题:本题共4小题,每小题5分,共20分。13.已知是椭圆的两个焦点,点M在C上,则的最大值为_______14.过点,且周长最小的圆的标准方程为______15.在数列中,若,则该数列的通项公式__________16.已知函数,若在定义域内有两个零点,那么实数a的取值范围为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在三棱锥中,侧面PAB是边长为4的正三角形且与底面ABC垂直,点D,E,F,H分别是棱PA,AB,BC,PC的中点(1)若点G在棱BC上,且BG=3GC,求证:平面∥平面DHG;(2)若AC=2,,求二面角的余弦值18.(12分)已知函数.(1)求的导数;(2)求函数的图象在点处的切线方程.19.(12分)四棱锥,底面为矩形,面,且,点在线段上,且面.(1)求线段的长;(2)对于(1)中的,求直线与面所成角的正弦值.20.(12分)已知抛物线的焦点是椭圆的一个焦点,直线交抛物线E于两点(1)求E的方程;(2)若以BC为直径的圆过原点O,求直线l的方程21.(12分)已知甲组数据的茎叶图如图所示,其中数据的整数部分为茎,数据的小数部分(仅一位小数)为叶,例如第一个数据为5.3(1)求:甲组数据的平均值、方差、中位数;(2)乙组数据为,且甲、乙两组数据合并后的30个数据的平均值为,方差为,求:乙组数据的平均值和方差,写出必要的计算步骤.参考公式:平均值,方差22.(10分)如图四棱锥P-ABCD中,面PDC⊥面ABCD,∠ABC=∠DCB=,CD=2AB=2BC=2,△PDC是等边三角形.(1)设面PAB面PDC=l,证明:l//平面ABCD;(2)线段PC内是否存在一点E,使面ADE与面ABCD所成角的余弦值为,如果存在,求λ=的值,如果不存在,请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】分类讨论:当两圆外切时,圆心距等于半径之和;当两圆内切时,圆心距等于半径之差,即可求解.【详解】圆的圆心为,半径为,圆的圆心为,半径为.①当两圆外切时,有,此时.②当两圆内切时,有,此时.综上,当时两圆外切;当时两圆内切.故选:C【点睛】本题考查了圆与圆的位置关系,解答两圆相切问题时易忽略两圆相切包括内切和外切两种情况.解答时注意分类讨论,属于基础题.2、D【解析】利用等差数列下标的性质,结合等差数列前项和公式进行求解即可.【详解】由,所以,故选:D3、B【解析】首先分别设,,再根据椭圆的定义和性质列出等式,即可求解椭圆的短轴长.【详解】设,,所以,即,即,得,短轴长为.故选:B4、C【解析】根据图表数据可以看出小王和小张的平均成绩和成绩波动情况.【详解】解:从图表中可以看出小王每次的成绩均不低于小张,但是小王成绩波动比较大,故设小王与小张成绩的样本平均数分别为和,方差分别为和.可知故选:C5、B【解析】设,,则由题意可得,代入圆方程中化简可得曲线C的方程,从而可求出离心率【详解】设,,则,得,所以,因为点在圆上,所以,即,所以点的轨迹方程为,所以,则所以离心率为,故选:B6、B【解析】设点,其中,,求得,且有,,利用两角和的正切公式可求得的值,进而可求得的值,即可得出该双曲线的渐近线的方程.【详解】易知点、,设点,其中,,且,,且,,,所以,,,因为,所以,,则,因此,该双曲线渐近线方程为.故选:B.7、C【解析】因为线段D1Q与OP互相平分,所以四点O,Q,P,D1共面,且四边形OQPD1为平行四边形.若P在线段C1D1上时,Q一定在线段ON上运动,只有当P为C1D1的中点时,Q与点M重合,此时λ=1,符合题意若P在线段C1B1与线段B1A1上时,在平面ABCD找不到符合条件Q;在P在线段D1A1上时,点Q在直线OM上运动,只有当P为线段D1A1的中点时,点Q与点M重合,此时λ=0符合题意,所以符合条件的λ值有两个故选C.8、D【解析】利用等比数列的通项公式求解【详解】由等比数列的通项公式得:.故选:D9、A【解析】∵圆的方程为,即,∴圆的圆心为,半径为2.∵直线过点且与直线垂直∴直线.∴圆心到直线的距离.∴直线被圆截得的弦长,又∵坐标原点到的距离为,∴的面积为.考点:1、直线与圆的位置关系;2、三角形的面积公式.10、D【解析】利用等差数列性质得到,,计算得到答案.详解】等差数列中,故选D【点睛】本题考查了等差数列的计算,利用性质可以简化运算,是解题的关键.11、C【解析】根据直线斜率的定义即可求解.【详解】,斜率为1,则倾斜角为.故选:C.12、C【解析】根据双曲线的渐近线方程的特点,结合虚轴长的定义进行求解即可.【详解】因为双曲线=1的一条渐近线方程为x-4y=0,所以,因此该双曲线的虚轴长为,故选:C二、填空题:本题共4小题,每小题5分,共20分。13、16【解析】根据椭圆定义可得:,再用基本不等式求解.【详解】由椭圆的定义可得:,由基本不等式得:,当且仅当时,等号成立,故的最大值为16故答案为:1614、【解析】方法一:根据当线段为圆的直径时,圆周长最小,由线段的中点为圆心,其长一半为半径求解;方法二:根据当线段为圆的直径时,圆周长最小,根据以AB为直径的圆的方程求解.【详解】方法一:当线段为圆的直径时,过点,的圆的半径最小,从而周长最小,即圆心为线段的中点,半径则所求圆的标准方程为方法二:当线段为圆的直径时,过点,的圆的半径最小,从而周长最小又,,故所求圆的方程为,整理得,所以所求圆的标准方程为15、【解析】由已知可得数列是以为首项,3为公比的等比数列,结合等比数列通项公式即可得解.【详解】解:由在数列中,若,则数列是以为首项,为公比的等比数列,由等比数列通项公式可得,故答案为:.【点睛】本题考查了等比数列通项公式的求法,重点考查了运算能力,属基础题.16、【解析】先求定义域,再求导,针对分类讨论,结合单调性,极值,最值得到,研究其单调性及其零点,求出结果.【详解】定义域为,,当时,恒成立,在单调递减,不会有两个零点,故舍去;当时,在上,单调递增,在上,单调递减,故,又因为时,,时,,故要想在定义域内有两个零点,则,令,,,单调递增,又,故当时,.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)由中位线的性质可得、、,再由线面平行的判定可证平面PEF、平面PEF,最后根据面面平行的判定证明结论.(2)应用勾股定理、等边三角形的性质、面面和线面垂直的性质可证、、两两垂直,构建空间直角坐标系,求面BPC、面PCA的法向量,再应用空间向量夹角的坐标表示求二面角的余弦值.【小问1详解】因为D,H分别是PA,PC的中点,所以因为E,F分别是AB,BC的中点,所以,综上,,又平面PEF,平面PEF,所以平面PEF由题意,G是CF的中点,又H是PC的中点,所以,又平面PEF,平面PEF,所以平面PEF由,HG,平面DHG,所以平面平面DHG【小问2详解】在△ABC中,AB=4,AC=2,,所以,所以,又,则因为△PAB为等边三角形,点E为AB的中点,所以,又平面平面ABC,平面平面ABC=AB,所以平面ABC,面ABC,故综上,以E为坐标原点,以EB,EF,EP所在直线分别为x,y,z轴,建立空间直角坐标系,如图所示,有,,,,则,,设平面BPC的法向量为,则,令,则设平面PCA的法向量为,则,令,则所以.由图知,二面角的平面角为锐角,所以二面角的余弦值为18、(1);(2).【解析】(1)利用基本初等函数的导数公式及求导法则直接计算作答.(2)求出,再利用导数的几何意义求出切线方程作答.【小问1详解】函数定义域为,所以函数.【小问2详解】由(1)知,,而,于是得,即,所以函数的图象在点处的切线方程是.19、(1)1(2)【解析】(1)根据线面垂直得到,再由相似比得方程可求解;(2)建立空间直角坐标系,求平面的法向量,运用夹角公式先求线面角的余弦值,再转化为正弦值即可.小问1详解】面,在矩形中,易得:;【小问2详解】如四建立空间直角坐标系:则,,由题意可知:为平面的一个法向量,,,直线与面所成角的正弦值为.20、(1);(2).【解析】(1)利用椭圆的焦点与抛物线的焦点相同,列出方程求解即可(2)设,、,,联立直线与抛物线方程,利用韦达定理,通过,求出,得到直线方程【小问1详解】由题意知:,,∴的方程是【小问2详解】设,、,,由题意知,由,得,∴,,,∵以为直径的圆过点,∴,即,∴,解得,∴直线的方程是21、(1),,;(2),.【解析】(1)根据茎叶图求平均值,再由方差与均值的关系求,将茎叶图中的数据从小到大排列确定中位数M.(2)由甲乙平均数及(1)的结果列方程求乙组数据的平均值,再由方差与均值的关系列方程组求出,进而求方差.【小问1详解】,∴,由茎叶图知:数据从小到大排列为∴.【小问2详解】由题意,,又,因此.22、(1)证明见解析(2)存在【解析】(1)由已知可得∥,再由线面平行的判定可得∥平面,再由线面平行的性质可得∥,再由线面平行的判定可得结论,(2)由已知条件可证得两两垂直,所以以为原点,所在的直线分别为轴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 盘子商业机会挖掘与战略布局策略研究报告
- 定时传感器产品供应链分析
- 家用罐装饮料保温容器产品供应链分析
- 船用光反射镜项目运营指导方案
- 家具的定制制造行业相关项目经营管理报告
- 济南市区住房出租合同书
- 多元文化音乐行业经营分析报告
- 自行车车架项目运营指导方案
- 草地曲棍球运动用球商业机会挖掘与战略布局策略研究报告
- 夯实机产业链招商引资的调研报告
- 2024年安全员-C3证考试题库及答案
- 食管手术配合
- DL∕T 817-2014 立式水轮发电机检修技术规程
- 机电材料见证取样复试
- 2024年秋新版人教版三年级英语上册电子课本
- 护理安全教育案例及分析(3篇模板)
- 2024年信息安全师考试题库及答案(含AB卷)
- 24春国家开放大学《教育研究方法#》作业1-4参考答案
- 机场地勤的职业规划
- 大学物理-5省公开课金奖全国赛课一等奖微课获奖课件
- zpl语言指令解析
评论
0/150
提交评论